区间2型TSK模糊系统在心律失常分类中的应用

Phan Anh Phong, Kieu Quang Thien
{"title":"区间2型TSK模糊系统在心律失常分类中的应用","authors":"Phan Anh Phong, Kieu Quang Thien","doi":"10.1109/KSE.2009.19","DOIUrl":null,"url":null,"abstract":"The paper proposes a method to construct type-2 Takagi–Sugeno-Kang (TSK) fuzzy system for electrocardiogram (ECG) arrhythmic classification. The classifier is applied to distinguish normal sinus rhythm (NSR), ventricular fibrillation (VF) and ventricular tachycardia (VT). Two features of ECG signals, the average period and the pulse width, are inputs to the fuzzy classifier. The rule base in the fuzzy system is constructed from training data. We also present the method using fuzzy C-mean clustering algorithm and the back-propagation technique to determine parameters of type-2 TSK fuzzy classifier. The generalized bell primary membership function is used to examine the performance of the classifier with different shapes of membership functions. The results of experiments with data from the MIT-BIH Malignant Ventricular Arrhythmia Database show the classification accuracy of 100% for NSR signals, 93.3% for VF signals, and 92% of VT signals.","PeriodicalId":347175,"journal":{"name":"2009 International Conference on Knowledge and Systems Engineering","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Classification of Cardiac Arrhythmias Using Interval Type-2 TSK Fuzzy System\",\"authors\":\"Phan Anh Phong, Kieu Quang Thien\",\"doi\":\"10.1109/KSE.2009.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper proposes a method to construct type-2 Takagi–Sugeno-Kang (TSK) fuzzy system for electrocardiogram (ECG) arrhythmic classification. The classifier is applied to distinguish normal sinus rhythm (NSR), ventricular fibrillation (VF) and ventricular tachycardia (VT). Two features of ECG signals, the average period and the pulse width, are inputs to the fuzzy classifier. The rule base in the fuzzy system is constructed from training data. We also present the method using fuzzy C-mean clustering algorithm and the back-propagation technique to determine parameters of type-2 TSK fuzzy classifier. The generalized bell primary membership function is used to examine the performance of the classifier with different shapes of membership functions. The results of experiments with data from the MIT-BIH Malignant Ventricular Arrhythmia Database show the classification accuracy of 100% for NSR signals, 93.3% for VF signals, and 92% of VT signals.\",\"PeriodicalId\":347175,\"journal\":{\"name\":\"2009 International Conference on Knowledge and Systems Engineering\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Knowledge and Systems Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/KSE.2009.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Knowledge and Systems Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KSE.2009.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

提出了一种构建2型Takagi-Sugeno-Kang (TSK)模糊系统的方法,用于心电图心律失常的分类。该分类器用于区分正常窦性心律(NSR)、心室颤动(VF)和室性心动过速(VT)。心电信号的平均周期和脉宽两个特征作为模糊分类器的输入。模糊系统中的规则库由训练数据构成。提出了利用模糊c均值聚类算法和反向传播技术确定2型TSK模糊分类器参数的方法。采用广义贝尔初级隶属函数来检验不同隶属函数形状的分类器的性能。基于MIT-BIH恶性室性心律失常数据库数据的实验结果表明,NSR信号的分类准确率为100%,VF信号的分类准确率为93.3%,VT信号的分类准确率为92%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of Cardiac Arrhythmias Using Interval Type-2 TSK Fuzzy System
The paper proposes a method to construct type-2 Takagi–Sugeno-Kang (TSK) fuzzy system for electrocardiogram (ECG) arrhythmic classification. The classifier is applied to distinguish normal sinus rhythm (NSR), ventricular fibrillation (VF) and ventricular tachycardia (VT). Two features of ECG signals, the average period and the pulse width, are inputs to the fuzzy classifier. The rule base in the fuzzy system is constructed from training data. We also present the method using fuzzy C-mean clustering algorithm and the back-propagation technique to determine parameters of type-2 TSK fuzzy classifier. The generalized bell primary membership function is used to examine the performance of the classifier with different shapes of membership functions. The results of experiments with data from the MIT-BIH Malignant Ventricular Arrhythmia Database show the classification accuracy of 100% for NSR signals, 93.3% for VF signals, and 92% of VT signals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信