{"title":"ESP-NUCA:一种低成本自适应非统一缓存架构","authors":"Javier Merino, Valentin Puente, J. Gregorio","doi":"10.1109/HPCA.2010.5416641","DOIUrl":null,"url":null,"abstract":"This paper introduces a cost effective cache architecture called Enhanced Shared-Private Non-Uniform Cache Architecture (ESP-NUCA), which is suitable for highperformance Chip MultiProcessors (CMPs). This architecture enhances system stability by combining the advantages of private and shared caches. Starting from a shared NUCA, ESP-NUCA introduces a low-cost mechanism to dynamically allocate private cache blocks closer to their owner processor. In this way, average on-chip access latency is reduced and inter-core interference minimized. ESP-NUCA synergistically integrates victims and replicas thus making it possible to take advantage of multiple-readers for shared data, and to maximize cache usage under unbalanced core utilization. This architecture leads to stable behavior within the whole system across a broad spectrum of working scenarios. ESP-NUCA not only outperforms architectures with similar implementation costs such as private and shared caches by up to 20% and 40% respectively, but even outperforms much costlier architectures such as D-NUCA [13] by up to 28%, Adaptive Selective Replication [3] by up to 19%, and Cooperative Caching [5] by up to 15%. Moreover, performance variance throughout the set of benchmarks is 37% lower than with ASR, 87% lower than with D-NUCA, and 43% lower than with Cooperative Caching.","PeriodicalId":368621,"journal":{"name":"HPCA - 16 2010 The Sixteenth International Symposium on High-Performance Computer Architecture","volume":"131 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":"{\"title\":\"ESP-NUCA: A low-cost adaptive Non-Uniform Cache Architecture\",\"authors\":\"Javier Merino, Valentin Puente, J. Gregorio\",\"doi\":\"10.1109/HPCA.2010.5416641\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a cost effective cache architecture called Enhanced Shared-Private Non-Uniform Cache Architecture (ESP-NUCA), which is suitable for highperformance Chip MultiProcessors (CMPs). This architecture enhances system stability by combining the advantages of private and shared caches. Starting from a shared NUCA, ESP-NUCA introduces a low-cost mechanism to dynamically allocate private cache blocks closer to their owner processor. In this way, average on-chip access latency is reduced and inter-core interference minimized. ESP-NUCA synergistically integrates victims and replicas thus making it possible to take advantage of multiple-readers for shared data, and to maximize cache usage under unbalanced core utilization. This architecture leads to stable behavior within the whole system across a broad spectrum of working scenarios. ESP-NUCA not only outperforms architectures with similar implementation costs such as private and shared caches by up to 20% and 40% respectively, but even outperforms much costlier architectures such as D-NUCA [13] by up to 28%, Adaptive Selective Replication [3] by up to 19%, and Cooperative Caching [5] by up to 15%. Moreover, performance variance throughout the set of benchmarks is 37% lower than with ASR, 87% lower than with D-NUCA, and 43% lower than with Cooperative Caching.\",\"PeriodicalId\":368621,\"journal\":{\"name\":\"HPCA - 16 2010 The Sixteenth International Symposium on High-Performance Computer Architecture\",\"volume\":\"131 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"53\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HPCA - 16 2010 The Sixteenth International Symposium on High-Performance Computer Architecture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPCA.2010.5416641\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HPCA - 16 2010 The Sixteenth International Symposium on High-Performance Computer Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCA.2010.5416641","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ESP-NUCA: A low-cost adaptive Non-Uniform Cache Architecture
This paper introduces a cost effective cache architecture called Enhanced Shared-Private Non-Uniform Cache Architecture (ESP-NUCA), which is suitable for highperformance Chip MultiProcessors (CMPs). This architecture enhances system stability by combining the advantages of private and shared caches. Starting from a shared NUCA, ESP-NUCA introduces a low-cost mechanism to dynamically allocate private cache blocks closer to their owner processor. In this way, average on-chip access latency is reduced and inter-core interference minimized. ESP-NUCA synergistically integrates victims and replicas thus making it possible to take advantage of multiple-readers for shared data, and to maximize cache usage under unbalanced core utilization. This architecture leads to stable behavior within the whole system across a broad spectrum of working scenarios. ESP-NUCA not only outperforms architectures with similar implementation costs such as private and shared caches by up to 20% and 40% respectively, but even outperforms much costlier architectures such as D-NUCA [13] by up to 28%, Adaptive Selective Replication [3] by up to 19%, and Cooperative Caching [5] by up to 15%. Moreover, performance variance throughout the set of benchmarks is 37% lower than with ASR, 87% lower than with D-NUCA, and 43% lower than with Cooperative Caching.