M. Bernardi, A. Sgarlata, N. Motta, M. Fanfoni, D. del Moro, A. Balzarotti
{"title":"基于自底向上和自顶向下方法的硅表面锗量子点的排序","authors":"M. Bernardi, A. Sgarlata, N. Motta, M. Fanfoni, D. del Moro, A. Balzarotti","doi":"10.1109/ICONN.2008.4639268","DOIUrl":null,"url":null,"abstract":"The nanoscale ordering of inorganic semiconductor quantum dots (QDs) is crucial to obtain reliable structures for novel nanotechnological applications such as nanomemories, nanolasers and nanoelectronic devices. We have directly grown Ge QDs by physical vapour deposition (PVD) on Si(111), Si(100) and some of its vicinal surfaces and studied innovative bottom up techniques to order such nanostructures. Specifically, we harnessed naturally occurring instabilities due to reconstruction and intrinsic anisotropic diffusion in Si bare surfaces, such as step bunching and natural steps occurring in silicon vicinal surfaces, to order the QDs both in one dimension and in the plane. We have also shown the use of controlled quantities of surfactants, like Sb, dramatically improves the desired ordering. Moreover, we have assisted these self-assembling processes using top-down approaches like Focused Ion Beam (FIB) milling and STM nanoindentation to control the nucleation sites and the density of the Ge QDs. Real-time study of growth and self-assembly has been accomplished using Scanning Tunneling Microscopy imaging in UHV. An explanation of the occurring processes is given, and a software routine is used to quantify the ordering of the QDs both in pre-patterned and bare surfaces. Applications, mainly in the field of Nanocrystal Nonvolatile Memories, are discussed.","PeriodicalId":192889,"journal":{"name":"2008 International Conference on Nanoscience and Nanotechnology","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ordering of Ge quantum dots on silicon surfaces via bottom-up and top-down approaches\",\"authors\":\"M. Bernardi, A. Sgarlata, N. Motta, M. Fanfoni, D. del Moro, A. Balzarotti\",\"doi\":\"10.1109/ICONN.2008.4639268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The nanoscale ordering of inorganic semiconductor quantum dots (QDs) is crucial to obtain reliable structures for novel nanotechnological applications such as nanomemories, nanolasers and nanoelectronic devices. We have directly grown Ge QDs by physical vapour deposition (PVD) on Si(111), Si(100) and some of its vicinal surfaces and studied innovative bottom up techniques to order such nanostructures. Specifically, we harnessed naturally occurring instabilities due to reconstruction and intrinsic anisotropic diffusion in Si bare surfaces, such as step bunching and natural steps occurring in silicon vicinal surfaces, to order the QDs both in one dimension and in the plane. We have also shown the use of controlled quantities of surfactants, like Sb, dramatically improves the desired ordering. Moreover, we have assisted these self-assembling processes using top-down approaches like Focused Ion Beam (FIB) milling and STM nanoindentation to control the nucleation sites and the density of the Ge QDs. Real-time study of growth and self-assembly has been accomplished using Scanning Tunneling Microscopy imaging in UHV. An explanation of the occurring processes is given, and a software routine is used to quantify the ordering of the QDs both in pre-patterned and bare surfaces. Applications, mainly in the field of Nanocrystal Nonvolatile Memories, are discussed.\",\"PeriodicalId\":192889,\"journal\":{\"name\":\"2008 International Conference on Nanoscience and Nanotechnology\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 International Conference on Nanoscience and Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICONN.2008.4639268\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Conference on Nanoscience and Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONN.2008.4639268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ordering of Ge quantum dots on silicon surfaces via bottom-up and top-down approaches
The nanoscale ordering of inorganic semiconductor quantum dots (QDs) is crucial to obtain reliable structures for novel nanotechnological applications such as nanomemories, nanolasers and nanoelectronic devices. We have directly grown Ge QDs by physical vapour deposition (PVD) on Si(111), Si(100) and some of its vicinal surfaces and studied innovative bottom up techniques to order such nanostructures. Specifically, we harnessed naturally occurring instabilities due to reconstruction and intrinsic anisotropic diffusion in Si bare surfaces, such as step bunching and natural steps occurring in silicon vicinal surfaces, to order the QDs both in one dimension and in the plane. We have also shown the use of controlled quantities of surfactants, like Sb, dramatically improves the desired ordering. Moreover, we have assisted these self-assembling processes using top-down approaches like Focused Ion Beam (FIB) milling and STM nanoindentation to control the nucleation sites and the density of the Ge QDs. Real-time study of growth and self-assembly has been accomplished using Scanning Tunneling Microscopy imaging in UHV. An explanation of the occurring processes is given, and a software routine is used to quantify the ordering of the QDs both in pre-patterned and bare surfaces. Applications, mainly in the field of Nanocrystal Nonvolatile Memories, are discussed.