在基于 GNN 的建模方法中,利用注意力进行符号抽象,识别分布式空间传感器网络中的信息节点

Leonid Schwenke, Stefan Bloemheuvel, Martin Atzmueller
{"title":"在基于 GNN 的建模方法中,利用注意力进行符号抽象,识别分布式空间传感器网络中的信息节点","authors":"Leonid Schwenke, Stefan Bloemheuvel, Martin Atzmueller","doi":"10.32473/flairs.36.133109","DOIUrl":null,"url":null,"abstract":"Modeling complex data, e.g. time series as well as network-based data, is a prominent area of research. In this paper, we focus on a combination of both, analyzing network-based spatial sensor data which is attributed with high frequency time series information. We apply a symbolic representation and an attention-based local abstraction approach, to enhance interpretability on the respective complex high frequency time series data. For this, we aim at identifying informative measurements captured by the respective nodes of the sensor network. To do so, we demonstrate the efficacy of the Symbolic Fourier Approximation (SFA) and the attention-based symbolic abstraction method to localize relevant node sensor-information, by using a transformer architecture as an encoder for a graph neural network. In our experiments, we compare two seismological datasets to their previous state-of-the-art model, demonstrating the advantages and benefits of our presented approach.","PeriodicalId":302103,"journal":{"name":"The International FLAIRS Conference Proceedings","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Identifying Informative Nodes in Attributed Spatial Sensor Networks Using Attention for Symbolic Abstraction in a GNN-based Modeling Approach\",\"authors\":\"Leonid Schwenke, Stefan Bloemheuvel, Martin Atzmueller\",\"doi\":\"10.32473/flairs.36.133109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modeling complex data, e.g. time series as well as network-based data, is a prominent area of research. In this paper, we focus on a combination of both, analyzing network-based spatial sensor data which is attributed with high frequency time series information. We apply a symbolic representation and an attention-based local abstraction approach, to enhance interpretability on the respective complex high frequency time series data. For this, we aim at identifying informative measurements captured by the respective nodes of the sensor network. To do so, we demonstrate the efficacy of the Symbolic Fourier Approximation (SFA) and the attention-based symbolic abstraction method to localize relevant node sensor-information, by using a transformer architecture as an encoder for a graph neural network. In our experiments, we compare two seismological datasets to their previous state-of-the-art model, demonstrating the advantages and benefits of our presented approach.\",\"PeriodicalId\":302103,\"journal\":{\"name\":\"The International FLAIRS Conference Proceedings\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The International FLAIRS Conference Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32473/flairs.36.133109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International FLAIRS Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32473/flairs.36.133109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

复杂数据建模是一个突出的研究领域,例如时间序列数据和基于网络的数据。在本文中,我们将重点放在二者的结合上,分析带有高频时间序列信息的基于网络的空间传感器数据。我们采用符号表示法和基于注意力的局部抽象方法,来提高复杂高频时间序列数据的可解释性。为此,我们的目标是识别传感器网络各节点捕获的信息测量值。为此,我们利用变压器架构作为图神经网络的编码器,展示了符号傅立叶近似法(SFA)和基于注意力的符号抽象法在定位相关节点传感器信息方面的功效。在实验中,我们将两个地震学数据集与之前的最先进模型进行了比较,证明了我们提出的方法的优势和好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identifying Informative Nodes in Attributed Spatial Sensor Networks Using Attention for Symbolic Abstraction in a GNN-based Modeling Approach
Modeling complex data, e.g. time series as well as network-based data, is a prominent area of research. In this paper, we focus on a combination of both, analyzing network-based spatial sensor data which is attributed with high frequency time series information. We apply a symbolic representation and an attention-based local abstraction approach, to enhance interpretability on the respective complex high frequency time series data. For this, we aim at identifying informative measurements captured by the respective nodes of the sensor network. To do so, we demonstrate the efficacy of the Symbolic Fourier Approximation (SFA) and the attention-based symbolic abstraction method to localize relevant node sensor-information, by using a transformer architecture as an encoder for a graph neural network. In our experiments, we compare two seismological datasets to their previous state-of-the-art model, demonstrating the advantages and benefits of our presented approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信