{"title":"在线模式下基于分维跳估计的网络攻击检测改进算法","authors":"O. Sheluhin, S. Rybakov, A. Vanyushina","doi":"10.31854/1813-324x-2022-8-3-117-126","DOIUrl":null,"url":null,"abstract":"The paper considers a modification of the well-known algorithm for detecting anomalies in network traffic using a real-time fractal dimension jump estimation method. The modification uses real-time thresholding to provide additional filtering of the estimated fractal network traffic dimension. The accuracy of the current estimate of the fractal dimension and the reliability of anomaly detection in network traffic in online mode is improved by adding extra filtering to the algorithm.","PeriodicalId":298883,"journal":{"name":"Proceedings of Telecommunication Universities","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modified Algorithm for Detecting Network Attacks Using the Fractal Dimension Jump Estimation Method in Online Mode\",\"authors\":\"O. Sheluhin, S. Rybakov, A. Vanyushina\",\"doi\":\"10.31854/1813-324x-2022-8-3-117-126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper considers a modification of the well-known algorithm for detecting anomalies in network traffic using a real-time fractal dimension jump estimation method. The modification uses real-time thresholding to provide additional filtering of the estimated fractal network traffic dimension. The accuracy of the current estimate of the fractal dimension and the reliability of anomaly detection in network traffic in online mode is improved by adding extra filtering to the algorithm.\",\"PeriodicalId\":298883,\"journal\":{\"name\":\"Proceedings of Telecommunication Universities\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Telecommunication Universities\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31854/1813-324x-2022-8-3-117-126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Telecommunication Universities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31854/1813-324x-2022-8-3-117-126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modified Algorithm for Detecting Network Attacks Using the Fractal Dimension Jump Estimation Method in Online Mode
The paper considers a modification of the well-known algorithm for detecting anomalies in network traffic using a real-time fractal dimension jump estimation method. The modification uses real-time thresholding to provide additional filtering of the estimated fractal network traffic dimension. The accuracy of the current estimate of the fractal dimension and the reliability of anomaly detection in network traffic in online mode is improved by adding extra filtering to the algorithm.