二维拓扑度计算的最优复杂度算法

T. Boult, K. Sikorski
{"title":"二维拓扑度计算的最优复杂度算法","authors":"T. Boult, K. Sikorski","doi":"10.1137/0910042","DOIUrl":null,"url":null,"abstract":"An algorithm is presented for computing the topological degree for any function from a class F. The class F consists of functions $f:C \\to \\mathbb{R}^2 $ defined on C, the unit square, which satisfy the Lipschitz condition with constant $K > 0$, and whose infinity norm on the boundary of C is at least $d > 0$. For functions in this class, the algorithm could be useful in solving nonlinear systems of equations and also in other aspects of nonlinear analysis.A worst-case lower bound, $m^ * = 4\\lfloor {K / {4d}} \\rfloor $, is established on the number of function evaluations necessary to compute the topological degree for any function f from the class F. The parallel information used by our algorithm permits the computation of the degree for every f in F with $m^ * $ function evaluations. The cost of our algorithm is shown to be almost equal to the complexity of the problem.The algorithm has been implemented and tested. Performance information for a set of 10 systems of equations is reported.","PeriodicalId":200176,"journal":{"name":"Siam Journal on Scientific and Statistical Computing","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"An Optimal Complexity Algorithm for Computing the Topological Degree in Two Dimensions\",\"authors\":\"T. Boult, K. Sikorski\",\"doi\":\"10.1137/0910042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An algorithm is presented for computing the topological degree for any function from a class F. The class F consists of functions $f:C \\\\to \\\\mathbb{R}^2 $ defined on C, the unit square, which satisfy the Lipschitz condition with constant $K > 0$, and whose infinity norm on the boundary of C is at least $d > 0$. For functions in this class, the algorithm could be useful in solving nonlinear systems of equations and also in other aspects of nonlinear analysis.A worst-case lower bound, $m^ * = 4\\\\lfloor {K / {4d}} \\\\rfloor $, is established on the number of function evaluations necessary to compute the topological degree for any function f from the class F. The parallel information used by our algorithm permits the computation of the degree for every f in F with $m^ * $ function evaluations. The cost of our algorithm is shown to be almost equal to the complexity of the problem.The algorithm has been implemented and tested. Performance information for a set of 10 systems of equations is reported.\",\"PeriodicalId\":200176,\"journal\":{\"name\":\"Siam Journal on Scientific and Statistical Computing\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Siam Journal on Scientific and Statistical Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/0910042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Siam Journal on Scientific and Statistical Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/0910042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

给出了一种计算F类中任意函数拓扑度的算法。该类F由定义在单位平方C上的函数$ F:C \到$ mathbb{R}^2 $组成,该函数满足Lipschitz条件,且常数$K > 0$,且其无穷范数在C的边界上至少$d > 0$。对于本课程中的函数,该算法可用于求解非线性方程组以及非线性分析的其他方面。最坏情况下界$m^ * = 4\lfloor {K / {4d}} \rfloor $,建立在计算f类中任何函数f的拓扑度所需的函数求值的数量上。我们的算法使用的并行信息允许用$m^ * $函数求值来计算f中每个f的度。我们算法的代价几乎等于问题的复杂性。该算法已经实现并经过了测试。报道了一组10个方程组的性能信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Optimal Complexity Algorithm for Computing the Topological Degree in Two Dimensions
An algorithm is presented for computing the topological degree for any function from a class F. The class F consists of functions $f:C \to \mathbb{R}^2 $ defined on C, the unit square, which satisfy the Lipschitz condition with constant $K > 0$, and whose infinity norm on the boundary of C is at least $d > 0$. For functions in this class, the algorithm could be useful in solving nonlinear systems of equations and also in other aspects of nonlinear analysis.A worst-case lower bound, $m^ * = 4\lfloor {K / {4d}} \rfloor $, is established on the number of function evaluations necessary to compute the topological degree for any function f from the class F. The parallel information used by our algorithm permits the computation of the degree for every f in F with $m^ * $ function evaluations. The cost of our algorithm is shown to be almost equal to the complexity of the problem.The algorithm has been implemented and tested. Performance information for a set of 10 systems of equations is reported.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信