用Legendre伪谱和广义多项式混沌算法混合求解非线性随机最优控制问题

F. Harmon
{"title":"用Legendre伪谱和广义多项式混沌算法混合求解非线性随机最优控制问题","authors":"F. Harmon","doi":"10.23919/ACC.2017.7963351","DOIUrl":null,"url":null,"abstract":"A novel hybrid technique is discussed to numerically solve nonlinear stochastic optimal control (OC) problems with numerous potential applications. The hybrid technique combines a Legendre Pseudospectral Method (LPM) with a generalized Polynomial Chaos (gPC) method, which are highly accurate numerical methods for solving deterministic OC problems and stochastic differential equations (SDE), respectively. The hybrid algorithm first selects samples from the random space using collocation nodes, inserts those sample values into the differential equations of the OC problem, and then uses a pseudospectral-based deterministic solver to generate solutions for each of the resulting deterministic problems. The set of deterministic solutions (i.e., ensemble of random realizations) are then used to construct a polynomial representation of the solution to the stochastic OC problem as a function of the random inputs using a gPC method (i.e., a high-order stochastic collocation method). The hybrid technique is used to solve a nonlinear stochastic OC problem to demonstrate its utility. The algorithm is a highly accurate technique for solving nonlinear OC problems with uncertain parameters. The hybrid technique will allow the user to analyze the solution to an OC problem and understand how uncertainty on the parameters such as the states, initial conditions, and boundary conditions can affect the solution (i.e., uncertainty quantification). The algorithm may also be useful for near real-time OC since a new trajectory can be followed if the uncertainty can be estimated.","PeriodicalId":422926,"journal":{"name":"2017 American Control Conference (ACC)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Hybrid solution of nonlinear stochastic optimal control problems using Legendre Pseudospectral and generalized Polynomial Chaos algorithms\",\"authors\":\"F. Harmon\",\"doi\":\"10.23919/ACC.2017.7963351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel hybrid technique is discussed to numerically solve nonlinear stochastic optimal control (OC) problems with numerous potential applications. The hybrid technique combines a Legendre Pseudospectral Method (LPM) with a generalized Polynomial Chaos (gPC) method, which are highly accurate numerical methods for solving deterministic OC problems and stochastic differential equations (SDE), respectively. The hybrid algorithm first selects samples from the random space using collocation nodes, inserts those sample values into the differential equations of the OC problem, and then uses a pseudospectral-based deterministic solver to generate solutions for each of the resulting deterministic problems. The set of deterministic solutions (i.e., ensemble of random realizations) are then used to construct a polynomial representation of the solution to the stochastic OC problem as a function of the random inputs using a gPC method (i.e., a high-order stochastic collocation method). The hybrid technique is used to solve a nonlinear stochastic OC problem to demonstrate its utility. The algorithm is a highly accurate technique for solving nonlinear OC problems with uncertain parameters. The hybrid technique will allow the user to analyze the solution to an OC problem and understand how uncertainty on the parameters such as the states, initial conditions, and boundary conditions can affect the solution (i.e., uncertainty quantification). The algorithm may also be useful for near real-time OC since a new trajectory can be followed if the uncertainty can be estimated.\",\"PeriodicalId\":422926,\"journal\":{\"name\":\"2017 American Control Conference (ACC)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 American Control Conference (ACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ACC.2017.7963351\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC.2017.7963351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

讨论了一种新的混合技术,用于数值求解具有广泛应用前景的非线性随机最优控制问题。混合技术结合了Legendre伪谱法(LPM)和广义多项式混沌(gPC)方法,这两种方法分别是求解确定性OC问题和随机微分方程(SDE)的高精度数值方法。混合算法首先使用搭配节点从随机空间中选择样本,将这些样本值插入到OC问题的微分方程中,然后使用基于伪谱的确定性求解器生成每个结果确定性问题的解。然后,使用gPC方法(即高阶随机配置方法),使用确定性解集(即随机实现的集合)构建随机OC问题解的多项式表示,作为随机输入的函数。将混合技术应用于求解非线性随机OC问题,以证明其实用性。该算法是求解具有不确定参数的非线性OC问题的高精度技术。混合技术将允许用户分析OC问题的解决方案,并了解状态、初始条件和边界条件等参数的不确定性如何影响解决方案(即不确定性量化)。该算法也可用于近实时OC,因为如果可以估计不确定性,则可以遵循新的轨迹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid solution of nonlinear stochastic optimal control problems using Legendre Pseudospectral and generalized Polynomial Chaos algorithms
A novel hybrid technique is discussed to numerically solve nonlinear stochastic optimal control (OC) problems with numerous potential applications. The hybrid technique combines a Legendre Pseudospectral Method (LPM) with a generalized Polynomial Chaos (gPC) method, which are highly accurate numerical methods for solving deterministic OC problems and stochastic differential equations (SDE), respectively. The hybrid algorithm first selects samples from the random space using collocation nodes, inserts those sample values into the differential equations of the OC problem, and then uses a pseudospectral-based deterministic solver to generate solutions for each of the resulting deterministic problems. The set of deterministic solutions (i.e., ensemble of random realizations) are then used to construct a polynomial representation of the solution to the stochastic OC problem as a function of the random inputs using a gPC method (i.e., a high-order stochastic collocation method). The hybrid technique is used to solve a nonlinear stochastic OC problem to demonstrate its utility. The algorithm is a highly accurate technique for solving nonlinear OC problems with uncertain parameters. The hybrid technique will allow the user to analyze the solution to an OC problem and understand how uncertainty on the parameters such as the states, initial conditions, and boundary conditions can affect the solution (i.e., uncertainty quantification). The algorithm may also be useful for near real-time OC since a new trajectory can be followed if the uncertainty can be estimated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信