在超立方体多计算机上实现高斯乔丹

A. Gerasoulis, Nikolaos Missirlis, I. Nelken, R. Peskin
{"title":"在超立方体多计算机上实现高斯乔丹","authors":"A. Gerasoulis, Nikolaos Missirlis, I. Nelken, R. Peskin","doi":"10.1145/63047.63117","DOIUrl":null,"url":null,"abstract":"We consider the solution of dense algebraic systems on the NCUBE hypercube via the Gauss Jordan method. Advanced loop interchange techniques are used to determine the appropriate algorithm for MIMD architectures. For a computer with p = n processors, we show that Gauss Jordan is competitive to Gaussian elimination when pivoting is not used. We experiment with three mappings of columns to processors: block, wrap and reflection. We demonstrate that load balancing the processors results in a considerable reduction of execution time.","PeriodicalId":299435,"journal":{"name":"Conference on Hypercube Concurrent Computers and Applications","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Implementing Gauss Jordan on a hypercube multicomputer\",\"authors\":\"A. Gerasoulis, Nikolaos Missirlis, I. Nelken, R. Peskin\",\"doi\":\"10.1145/63047.63117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the solution of dense algebraic systems on the NCUBE hypercube via the Gauss Jordan method. Advanced loop interchange techniques are used to determine the appropriate algorithm for MIMD architectures. For a computer with p = n processors, we show that Gauss Jordan is competitive to Gaussian elimination when pivoting is not used. We experiment with three mappings of columns to processors: block, wrap and reflection. We demonstrate that load balancing the processors results in a considerable reduction of execution time.\",\"PeriodicalId\":299435,\"journal\":{\"name\":\"Conference on Hypercube Concurrent Computers and Applications\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference on Hypercube Concurrent Computers and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/63047.63117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Hypercube Concurrent Computers and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/63047.63117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

利用高斯约当方法研究了NCUBE超立方体上密集代数系统的解。先进的环路交换技术用于确定适合MIMD体系结构的算法。对于具有p = n处理器的计算机,我们证明了在不使用旋转时高斯乔丹与高斯消去是竞争的。我们试验了列到处理器的三种映射:块、换行和反射。我们演示了处理器的负载平衡可以大大减少执行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Implementing Gauss Jordan on a hypercube multicomputer
We consider the solution of dense algebraic systems on the NCUBE hypercube via the Gauss Jordan method. Advanced loop interchange techniques are used to determine the appropriate algorithm for MIMD architectures. For a computer with p = n processors, we show that Gauss Jordan is competitive to Gaussian elimination when pivoting is not used. We experiment with three mappings of columns to processors: block, wrap and reflection. We demonstrate that load balancing the processors results in a considerable reduction of execution time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信