识别计算机生成图像的新功能

A. Dirik, Sevinc Bayram, H. Sencar, N. Memon
{"title":"识别计算机生成图像的新功能","authors":"A. Dirik, Sevinc Bayram, H. Sencar, N. Memon","doi":"10.1109/ICIP.2007.4380047","DOIUrl":null,"url":null,"abstract":"Discrimination of computer generated images from real images is becoming more and more important. In this paper, we propose the use of new features to distinguish computer generated images from real images. The proposed features are based on the differences in the acquisition process of images. More specifically, traces of demosaicking and chromatic aberration are used to differentiate computer generated images from digital camera images. It is observed that the former features perform very well on high quality images, whereas the latter features perform consistently across a wide range of compression values. The experimental results show that proposed features are capable of improving the accuracy of the state-of-the-art techniques.","PeriodicalId":131177,"journal":{"name":"2007 IEEE International Conference on Image Processing","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"96","resultStr":"{\"title\":\"New Features to Identify Computer Generated Images\",\"authors\":\"A. Dirik, Sevinc Bayram, H. Sencar, N. Memon\",\"doi\":\"10.1109/ICIP.2007.4380047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Discrimination of computer generated images from real images is becoming more and more important. In this paper, we propose the use of new features to distinguish computer generated images from real images. The proposed features are based on the differences in the acquisition process of images. More specifically, traces of demosaicking and chromatic aberration are used to differentiate computer generated images from digital camera images. It is observed that the former features perform very well on high quality images, whereas the latter features perform consistently across a wide range of compression values. The experimental results show that proposed features are capable of improving the accuracy of the state-of-the-art techniques.\",\"PeriodicalId\":131177,\"journal\":{\"name\":\"2007 IEEE International Conference on Image Processing\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"96\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Conference on Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2007.4380047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2007.4380047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 96

摘要

计算机生成的图像与真实图像的区分变得越来越重要。在本文中,我们提出使用新的特征来区分计算机生成的图像和真实图像。所提出的特征是基于图像获取过程的差异。更具体地说,去马赛克和色差的痕迹被用来区分计算机生成的图像和数码相机图像。可以观察到,前一种特征在高质量图像上表现非常好,而后一种特征在大范围的压缩值上表现一致。实验结果表明,所提出的特征能够提高当前技术的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New Features to Identify Computer Generated Images
Discrimination of computer generated images from real images is becoming more and more important. In this paper, we propose the use of new features to distinguish computer generated images from real images. The proposed features are based on the differences in the acquisition process of images. More specifically, traces of demosaicking and chromatic aberration are used to differentiate computer generated images from digital camera images. It is observed that the former features perform very well on high quality images, whereas the latter features perform consistently across a wide range of compression values. The experimental results show that proposed features are capable of improving the accuracy of the state-of-the-art techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信