基于插值的里德-所罗门码解码的重编码技术

C. Senger
{"title":"基于插值的里德-所罗门码解码的重编码技术","authors":"C. Senger","doi":"10.1109/QBSC.2014.6841214","DOIUrl":null,"url":null,"abstract":"We consider interpolation-based decoding of Reed-Solomon codes using the Guruswami-Sudan algorithm (GSA) and investigate the effects of two modification techniques for received vectors, i.e., the re-encoding map and the newly introduced periodicity projection. After an analysis of the latter, we track the benefits of modified received vectors (that is low Hamming weight and regular structure) through the interpolation step of the GSA and show how the involved homogeneous linear system of equations can be compressed. We show that this compression as well as the recovery of the interpolated bivariate polynomial is particularly simple when the periodicity projection was applied.","PeriodicalId":314871,"journal":{"name":"2014 27th Biennial Symposium on Communications (QBSC)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Re-encoding techniques for interpolation-based decoding of Reed-Solomon codes\",\"authors\":\"C. Senger\",\"doi\":\"10.1109/QBSC.2014.6841214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider interpolation-based decoding of Reed-Solomon codes using the Guruswami-Sudan algorithm (GSA) and investigate the effects of two modification techniques for received vectors, i.e., the re-encoding map and the newly introduced periodicity projection. After an analysis of the latter, we track the benefits of modified received vectors (that is low Hamming weight and regular structure) through the interpolation step of the GSA and show how the involved homogeneous linear system of equations can be compressed. We show that this compression as well as the recovery of the interpolated bivariate polynomial is particularly simple when the periodicity projection was applied.\",\"PeriodicalId\":314871,\"journal\":{\"name\":\"2014 27th Biennial Symposium on Communications (QBSC)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 27th Biennial Symposium on Communications (QBSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/QBSC.2014.6841214\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 27th Biennial Symposium on Communications (QBSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QBSC.2014.6841214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们考虑使用Guruswami-Sudan算法(GSA)对Reed-Solomon码进行基于插值的解码,并研究了两种修改技术对接收向量的影响,即重新编码映射和新引入的周期性投影。在对后者进行分析之后,我们通过GSA的插值步骤跟踪了修改后的接收向量(即低汉明权值和规则结构)的好处,并展示了如何压缩所涉及的齐次线性方程组。我们表明,当应用周期性投影时,这种压缩以及插值的二元多项式的恢复特别简单。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Re-encoding techniques for interpolation-based decoding of Reed-Solomon codes
We consider interpolation-based decoding of Reed-Solomon codes using the Guruswami-Sudan algorithm (GSA) and investigate the effects of two modification techniques for received vectors, i.e., the re-encoding map and the newly introduced periodicity projection. After an analysis of the latter, we track the benefits of modified received vectors (that is low Hamming weight and regular structure) through the interpolation step of the GSA and show how the involved homogeneous linear system of equations can be compressed. We show that this compression as well as the recovery of the interpolated bivariate polynomial is particularly simple when the periodicity projection was applied.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信