{"title":"水采样图像中的水浊度估计","authors":"I. Montassar, A. Benazza-Benyahia","doi":"10.1109/ATSIP49331.2020.9231862","DOIUrl":null,"url":null,"abstract":"This paper tackles the problem of estimating water turbidity by analyzing images. This computer-vision solution avoids to resort to use specific laboratory instruments and, hence facilitates the water characterization in situ. Our contribution consists in designing a whole image processing chain composed of pre-processing, segmentation, feature extraction and classification modules. The second originality of our work relies on comparing two dual approaches for the segmentation and feature extraction: handcrafted and deep neural network based approaches. Finally, the lack of a publicly available dataset has motivated the building of an appropriate dataset. Experimental results indicate satisfactory performances of the proposed approaches.","PeriodicalId":384018,"journal":{"name":"2020 5th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Water turbidity estimation in water sampled images\",\"authors\":\"I. Montassar, A. Benazza-Benyahia\",\"doi\":\"10.1109/ATSIP49331.2020.9231862\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper tackles the problem of estimating water turbidity by analyzing images. This computer-vision solution avoids to resort to use specific laboratory instruments and, hence facilitates the water characterization in situ. Our contribution consists in designing a whole image processing chain composed of pre-processing, segmentation, feature extraction and classification modules. The second originality of our work relies on comparing two dual approaches for the segmentation and feature extraction: handcrafted and deep neural network based approaches. Finally, the lack of a publicly available dataset has motivated the building of an appropriate dataset. Experimental results indicate satisfactory performances of the proposed approaches.\",\"PeriodicalId\":384018,\"journal\":{\"name\":\"2020 5th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 5th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ATSIP49331.2020.9231862\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 5th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATSIP49331.2020.9231862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Water turbidity estimation in water sampled images
This paper tackles the problem of estimating water turbidity by analyzing images. This computer-vision solution avoids to resort to use specific laboratory instruments and, hence facilitates the water characterization in situ. Our contribution consists in designing a whole image processing chain composed of pre-processing, segmentation, feature extraction and classification modules. The second originality of our work relies on comparing two dual approaches for the segmentation and feature extraction: handcrafted and deep neural network based approaches. Finally, the lack of a publicly available dataset has motivated the building of an appropriate dataset. Experimental results indicate satisfactory performances of the proposed approaches.