基于有序与随机交叉相结合的遗传算法优化销售员出行问题

Muhammad Firdaus Shafie, F. Ahmad, Muhammad Khusairi Osman, Ahmad Puad Ismail, K. A. Ahmad, S. Z. Yahaya, M. Idris, Anwar Hassan Ibrahim
{"title":"基于有序与随机交叉相结合的遗传算法优化销售员出行问题","authors":"Muhammad Firdaus Shafie, F. Ahmad, Muhammad Khusairi Osman, Ahmad Puad Ismail, K. A. Ahmad, S. Z. Yahaya, M. Idris, Anwar Hassan Ibrahim","doi":"10.1109/ICCSCE58721.2023.10237137","DOIUrl":null,"url":null,"abstract":"Traveling salesman problem (TSP) is a problem of determining the shortest path for a salesman to take to visit all cities. Although a small number of cities is easy to solve, as the number of cities increases, it’s not possible to solve in polynomial time as it was a combinatorial nondeterministic polynomial (NP-hard) problem. Hence, this project is implementing a genetic algorithm (GA) to solve TSP using Python programming. The focus of this paper is to analyze the GA using order crossover (OX) and random crossover (RX) and propose a combination mechanism, direct combination (OX-RX) and Dynamic Linear combination (OXRX-Linear) to optimize TSP. We test GA for OX and RX in a random set of cities, up to 75 total cities. Then compare the result of the proposed combination OX-RX and OX-RXLinear. The result shows that both proposed combined mechanisms OX-RX and OX-RX-Linear improve the performance of GA in solving TSP.","PeriodicalId":287947,"journal":{"name":"2023 IEEE 13th International Conference on Control System, Computing and Engineering (ICCSCE)","volume":"04 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of Saleman Travelling Problem Using Genetic Algorithm with Combination of Order and Random Crossover\",\"authors\":\"Muhammad Firdaus Shafie, F. Ahmad, Muhammad Khusairi Osman, Ahmad Puad Ismail, K. A. Ahmad, S. Z. Yahaya, M. Idris, Anwar Hassan Ibrahim\",\"doi\":\"10.1109/ICCSCE58721.2023.10237137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traveling salesman problem (TSP) is a problem of determining the shortest path for a salesman to take to visit all cities. Although a small number of cities is easy to solve, as the number of cities increases, it’s not possible to solve in polynomial time as it was a combinatorial nondeterministic polynomial (NP-hard) problem. Hence, this project is implementing a genetic algorithm (GA) to solve TSP using Python programming. The focus of this paper is to analyze the GA using order crossover (OX) and random crossover (RX) and propose a combination mechanism, direct combination (OX-RX) and Dynamic Linear combination (OXRX-Linear) to optimize TSP. We test GA for OX and RX in a random set of cities, up to 75 total cities. Then compare the result of the proposed combination OX-RX and OX-RXLinear. The result shows that both proposed combined mechanisms OX-RX and OX-RX-Linear improve the performance of GA in solving TSP.\",\"PeriodicalId\":287947,\"journal\":{\"name\":\"2023 IEEE 13th International Conference on Control System, Computing and Engineering (ICCSCE)\",\"volume\":\"04 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 13th International Conference on Control System, Computing and Engineering (ICCSCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSCE58721.2023.10237137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 13th International Conference on Control System, Computing and Engineering (ICCSCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSCE58721.2023.10237137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

旅行推销员问题(TSP)是确定一个推销员访问所有城市所采取的最短路径的问题。虽然少数城市很容易解决,但随着城市数量的增加,它不可能在多项式时间内解决,因为它是一个组合不确定性多项式(NP-hard)问题。因此,本项目使用Python编程实现遗传算法(GA)来解决TSP问题。本文重点分析了基于有序交叉(OX)和随机交叉(RX)的遗传算法,提出了直接组合(OX-RX)和动态线性组合(OXRX-Linear)优化TSP的组合机制。我们在一组随机的城市中测试了OX和RX的GA,总共有75个城市。然后比较所提出的OX-RX和OX-RXLinear组合的结果。结果表明,提出的OX-RX和OX-RX- linear组合机制提高了遗传算法求解TSP的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of Saleman Travelling Problem Using Genetic Algorithm with Combination of Order and Random Crossover
Traveling salesman problem (TSP) is a problem of determining the shortest path for a salesman to take to visit all cities. Although a small number of cities is easy to solve, as the number of cities increases, it’s not possible to solve in polynomial time as it was a combinatorial nondeterministic polynomial (NP-hard) problem. Hence, this project is implementing a genetic algorithm (GA) to solve TSP using Python programming. The focus of this paper is to analyze the GA using order crossover (OX) and random crossover (RX) and propose a combination mechanism, direct combination (OX-RX) and Dynamic Linear combination (OXRX-Linear) to optimize TSP. We test GA for OX and RX in a random set of cities, up to 75 total cities. Then compare the result of the proposed combination OX-RX and OX-RXLinear. The result shows that both proposed combined mechanisms OX-RX and OX-RX-Linear improve the performance of GA in solving TSP.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信