一致性风险测度的监管套利的双重特征

Martin Herdegen, Nazem Khan
{"title":"一致性风险测度的监管套利的双重特征","authors":"Martin Herdegen, Nazem Khan","doi":"10.2139/ssrn.3691027","DOIUrl":null,"url":null,"abstract":"We revisit mean-risk portfolio selection in a one-period financial market where risk is quantified by a positively homogeneous risk measure $\\rho$ on $L^1$. We first show that under mild assumptions, the set of optimal portfolios for a fixed return is nonempty and compact. However, unlike in classical mean-variance portfolio selection, it can happen that no efficient portfolios exist. We call this situation regulatory arbitrage, and prove that it cannot be excluded - unless $\\rho$ is as conservative as the worst-case risk measure. After providing a primal characterisation, we focus our attention on coherent risk measures, and give a necessary and sufficient characterisation for regulatory arbitrage. We show that the presence or absence of regulatory arbitrage for $\\rho$ is intimately linked to the interplay between the set of equivalent martingale measures (EMMs) for the discounted risky assets and the set of absolutely continuous measures in the dual representation of $\\rho$. A special case of our result shows that the market does not admit regulatory arbitrage for Expected Shortfall at level $\\alpha$ if and only if there exists an EMM $\\mathbb{Q} \\approx \\mathbb{P}$ such that $\\Vert \\frac{\\text{d}\\mathbb{Q}}{\\text{d}\\mathbb{P}} \\Vert_{\\infty} < \\frac{1}{\\alpha}$.","PeriodicalId":385109,"journal":{"name":"arXiv: Mathematical Finance","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Dual Characterisation of Regulatory Arbitrage for Coherent Risk Measures\",\"authors\":\"Martin Herdegen, Nazem Khan\",\"doi\":\"10.2139/ssrn.3691027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We revisit mean-risk portfolio selection in a one-period financial market where risk is quantified by a positively homogeneous risk measure $\\\\rho$ on $L^1$. We first show that under mild assumptions, the set of optimal portfolios for a fixed return is nonempty and compact. However, unlike in classical mean-variance portfolio selection, it can happen that no efficient portfolios exist. We call this situation regulatory arbitrage, and prove that it cannot be excluded - unless $\\\\rho$ is as conservative as the worst-case risk measure. After providing a primal characterisation, we focus our attention on coherent risk measures, and give a necessary and sufficient characterisation for regulatory arbitrage. We show that the presence or absence of regulatory arbitrage for $\\\\rho$ is intimately linked to the interplay between the set of equivalent martingale measures (EMMs) for the discounted risky assets and the set of absolutely continuous measures in the dual representation of $\\\\rho$. A special case of our result shows that the market does not admit regulatory arbitrage for Expected Shortfall at level $\\\\alpha$ if and only if there exists an EMM $\\\\mathbb{Q} \\\\approx \\\\mathbb{P}$ such that $\\\\Vert \\\\frac{\\\\text{d}\\\\mathbb{Q}}{\\\\text{d}\\\\mathbb{P}} \\\\Vert_{\\\\infty} < \\\\frac{1}{\\\\alpha}$.\",\"PeriodicalId\":385109,\"journal\":{\"name\":\"arXiv: Mathematical Finance\",\"volume\":\"100 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Mathematical Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3691027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3691027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们重新审视平均风险投资组合选择在一个时期的金融市场,其中风险是量化的积极同质风险措施 $\rho$ on $L^1$. 我们首先证明了在温和的假设下,固定收益的最优投资组合集是非空的和紧凑的。然而,与经典的均值-方差投资组合选择不同,不存在有效的投资组合。我们把这种情况称为监管套利,并证明它不能被排除——除非 $\rho$ 和最坏情况下的风险度量一样保守。在提供了一个基本的特征之后,我们将注意力集中在连贯的风险措施上,并为监管套利提供了一个必要和充分的特征。我们证明了监管套利的存在与否 $\rho$ 的对偶表示中,贴现风险资产的等效鞅度量集(emm)与绝对连续度量集之间的相互作用密切相关 $\rho$. 我们的研究结果的一个特例表明,市场不允许对水平上的预期缺口进行监管套利 $\alpha$ 当且仅当存在EMM $\mathbb{Q} \approx \mathbb{P}$ 这样 $\Vert \frac{\text{d}\mathbb{Q}}{\text{d}\mathbb{P}} \Vert_{\infty} < \frac{1}{\alpha}$.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Dual Characterisation of Regulatory Arbitrage for Coherent Risk Measures
We revisit mean-risk portfolio selection in a one-period financial market where risk is quantified by a positively homogeneous risk measure $\rho$ on $L^1$. We first show that under mild assumptions, the set of optimal portfolios for a fixed return is nonempty and compact. However, unlike in classical mean-variance portfolio selection, it can happen that no efficient portfolios exist. We call this situation regulatory arbitrage, and prove that it cannot be excluded - unless $\rho$ is as conservative as the worst-case risk measure. After providing a primal characterisation, we focus our attention on coherent risk measures, and give a necessary and sufficient characterisation for regulatory arbitrage. We show that the presence or absence of regulatory arbitrage for $\rho$ is intimately linked to the interplay between the set of equivalent martingale measures (EMMs) for the discounted risky assets and the set of absolutely continuous measures in the dual representation of $\rho$. A special case of our result shows that the market does not admit regulatory arbitrage for Expected Shortfall at level $\alpha$ if and only if there exists an EMM $\mathbb{Q} \approx \mathbb{P}$ such that $\Vert \frac{\text{d}\mathbb{Q}}{\text{d}\mathbb{P}} \Vert_{\infty} < \frac{1}{\alpha}$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信