锂离子电池剩余使用寿命估算的数据驱动预测技术

R. Razavi-Far, Maryam Farajzadeh-Zanjani, Shiladitya Chakrabarti, M. Saif
{"title":"锂离子电池剩余使用寿命估算的数据驱动预测技术","authors":"R. Razavi-Far, Maryam Farajzadeh-Zanjani, Shiladitya Chakrabarti, M. Saif","doi":"10.1109/ICPHM.2016.7542870","DOIUrl":null,"url":null,"abstract":"This paper aims to study the use of various data-driven techniques for estimating the remaining useful life (RUL) of the Li-ion batteries. These data-driven techniques include neural networks, group method of data handling, neuro-fuzzy networks, and random forests as an ensemble-based system. These prognostic techniques make use of the past and current data to predict the upcoming values of the capacity to estimate the remaining useful life of the battery. This work presents a comparative study of these data-driven prognostic techniques on constant load experimental data collected from Li-ion batteries. Experimental results show that these data-driven prognostic techniques can effectively estimate the remaining useful life of the Li-ion batteries. However, the random forests and neuro-fuzzy techniques outperform other competitors in terms of the RUL prediction error and root mean square error (RMSE), respectively.","PeriodicalId":140911,"journal":{"name":"2016 IEEE International Conference on Prognostics and Health Management (ICPHM)","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Data-driven prognostic techniques for estimation of the remaining useful life of lithium-ion batteries\",\"authors\":\"R. Razavi-Far, Maryam Farajzadeh-Zanjani, Shiladitya Chakrabarti, M. Saif\",\"doi\":\"10.1109/ICPHM.2016.7542870\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims to study the use of various data-driven techniques for estimating the remaining useful life (RUL) of the Li-ion batteries. These data-driven techniques include neural networks, group method of data handling, neuro-fuzzy networks, and random forests as an ensemble-based system. These prognostic techniques make use of the past and current data to predict the upcoming values of the capacity to estimate the remaining useful life of the battery. This work presents a comparative study of these data-driven prognostic techniques on constant load experimental data collected from Li-ion batteries. Experimental results show that these data-driven prognostic techniques can effectively estimate the remaining useful life of the Li-ion batteries. However, the random forests and neuro-fuzzy techniques outperform other competitors in terms of the RUL prediction error and root mean square error (RMSE), respectively.\",\"PeriodicalId\":140911,\"journal\":{\"name\":\"2016 IEEE International Conference on Prognostics and Health Management (ICPHM)\",\"volume\":\"103 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Prognostics and Health Management (ICPHM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPHM.2016.7542870\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Prognostics and Health Management (ICPHM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPHM.2016.7542870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

本文旨在研究各种数据驱动技术在估算锂离子电池剩余使用寿命(RUL)中的应用。这些数据驱动技术包括神经网络、数据处理组方法、神经模糊网络和随机森林作为一个基于集成的系统。这些预测技术利用过去和当前的数据来预测即将到来的容量值,以估计电池的剩余使用寿命。这项工作提出了这些数据驱动的预测技术在恒负载实验数据收集从锂离子电池的比较研究。实验结果表明,这些数据驱动的预测技术可以有效地估计锂离子电池的剩余使用寿命。然而,随机森林和神经模糊技术分别在RUL预测误差和均方根误差(RMSE)方面优于其他竞争对手。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data-driven prognostic techniques for estimation of the remaining useful life of lithium-ion batteries
This paper aims to study the use of various data-driven techniques for estimating the remaining useful life (RUL) of the Li-ion batteries. These data-driven techniques include neural networks, group method of data handling, neuro-fuzzy networks, and random forests as an ensemble-based system. These prognostic techniques make use of the past and current data to predict the upcoming values of the capacity to estimate the remaining useful life of the battery. This work presents a comparative study of these data-driven prognostic techniques on constant load experimental data collected from Li-ion batteries. Experimental results show that these data-driven prognostic techniques can effectively estimate the remaining useful life of the Li-ion batteries. However, the random forests and neuro-fuzzy techniques outperform other competitors in terms of the RUL prediction error and root mean square error (RMSE), respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信