A2iA阿拉伯语手写文本识别系统在Open HaRT2013的评估

Théodore Bluche, J. Louradour, Maxime Knibbe, Bastien Moysset, Mohamed Benzeghiba, Christopher Kermorvant
{"title":"A2iA阿拉伯语手写文本识别系统在Open HaRT2013的评估","authors":"Théodore Bluche, J. Louradour, Maxime Knibbe, Bastien Moysset, Mohamed Benzeghiba, Christopher Kermorvant","doi":"10.1109/DAS.2014.40","DOIUrl":null,"url":null,"abstract":"This paper describes the Arabic handwriting recognition systems proposed by A2iA to the NIST OpenHaRT2013 evaluation. These systems were based on an optical model using Long Short-Term Memory (LSTM) recurrent neural networks, trained to recognize the different forms of the Arabic characters directly from the image, without explicit feature extraction nor segmentation.Large vocabulary selection techniques and n-gram language modeling were used to provide a full paragraph recognition, without explicit word segmentation. Several recognition systems were also combined with the ROVER combination algorithm. The best system exceeded 80% of recognition rate.","PeriodicalId":220495,"journal":{"name":"2014 11th IAPR International Workshop on Document Analysis Systems","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":"{\"title\":\"The A2iA Arabic Handwritten Text Recognition System at the Open HaRT2013 Evaluation\",\"authors\":\"Théodore Bluche, J. Louradour, Maxime Knibbe, Bastien Moysset, Mohamed Benzeghiba, Christopher Kermorvant\",\"doi\":\"10.1109/DAS.2014.40\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the Arabic handwriting recognition systems proposed by A2iA to the NIST OpenHaRT2013 evaluation. These systems were based on an optical model using Long Short-Term Memory (LSTM) recurrent neural networks, trained to recognize the different forms of the Arabic characters directly from the image, without explicit feature extraction nor segmentation.Large vocabulary selection techniques and n-gram language modeling were used to provide a full paragraph recognition, without explicit word segmentation. Several recognition systems were also combined with the ROVER combination algorithm. The best system exceeded 80% of recognition rate.\",\"PeriodicalId\":220495,\"journal\":{\"name\":\"2014 11th IAPR International Workshop on Document Analysis Systems\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"45\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 11th IAPR International Workshop on Document Analysis Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DAS.2014.40\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 11th IAPR International Workshop on Document Analysis Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DAS.2014.40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45

摘要

本文介绍了A2iA提出的阿拉伯语手写识别系统对NIST OpenHaRT2013的评估。这些系统基于使用长短期记忆(LSTM)递归神经网络的光学模型,经过训练可以直接从图像中识别不同形式的阿拉伯字符,而不需要明确的特征提取或分割。使用大词汇选择技术和n-gram语言建模来提供完整的段落识别,而不需要明确的分词。几种识别系统也结合了ROVER组合算法。最好的系统识别率超过80%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The A2iA Arabic Handwritten Text Recognition System at the Open HaRT2013 Evaluation
This paper describes the Arabic handwriting recognition systems proposed by A2iA to the NIST OpenHaRT2013 evaluation. These systems were based on an optical model using Long Short-Term Memory (LSTM) recurrent neural networks, trained to recognize the different forms of the Arabic characters directly from the image, without explicit feature extraction nor segmentation.Large vocabulary selection techniques and n-gram language modeling were used to provide a full paragraph recognition, without explicit word segmentation. Several recognition systems were also combined with the ROVER combination algorithm. The best system exceeded 80% of recognition rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信