基于人工智能光容积脉搏波信号的无创血糖监测研究进展

Hendrana Tjahjadi, Hery Sudaryanto, Agung Budi Rahmanto, Azka V Lesmana, Ahmad Ilham Irianto, Oczha Alifian
{"title":"基于人工智能光容积脉搏波信号的无创血糖监测研究进展","authors":"Hendrana Tjahjadi, Hery Sudaryanto, Agung Budi Rahmanto, Azka V Lesmana, Ahmad Ilham Irianto, Oczha Alifian","doi":"10.1109/ICACSIS56558.2022.9923513","DOIUrl":null,"url":null,"abstract":"This paper discusses several cutting-edge non-invasive techniques for measuring blood glucose levels (BGL) using photoplethysmography (PPG) signals. These methods can be efficiently and precisely carried out using artificial intelligence algorithms (AI). The most important parameter for identifying the presence of health issues in a person's body is blood glucose. The state of blood circulation is reflected in the PPG signal. PPG-based BGL measurement utilizing AI is a non-invasive measurement approach because BGL measurement is still currently invasive. This study examines the development of this technology using data collected between 2009 and 2022. The future of non-invasive BGL employing PPG signals with artificial intelligence technology looks promising. Further studies may use the findings of the methodological mapping in this review as a guidance when deciding which BGL measuring methodology to use.","PeriodicalId":165728,"journal":{"name":"2022 International Conference on Advanced Computer Science and Information Systems (ICACSIS)","volume":"227 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Review of Non-Invasive Monitoring of Blood Glucose Levels Based on Photoplethysmography Signals Using Artificial Intelligence\",\"authors\":\"Hendrana Tjahjadi, Hery Sudaryanto, Agung Budi Rahmanto, Azka V Lesmana, Ahmad Ilham Irianto, Oczha Alifian\",\"doi\":\"10.1109/ICACSIS56558.2022.9923513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses several cutting-edge non-invasive techniques for measuring blood glucose levels (BGL) using photoplethysmography (PPG) signals. These methods can be efficiently and precisely carried out using artificial intelligence algorithms (AI). The most important parameter for identifying the presence of health issues in a person's body is blood glucose. The state of blood circulation is reflected in the PPG signal. PPG-based BGL measurement utilizing AI is a non-invasive measurement approach because BGL measurement is still currently invasive. This study examines the development of this technology using data collected between 2009 and 2022. The future of non-invasive BGL employing PPG signals with artificial intelligence technology looks promising. Further studies may use the findings of the methodological mapping in this review as a guidance when deciding which BGL measuring methodology to use.\",\"PeriodicalId\":165728,\"journal\":{\"name\":\"2022 International Conference on Advanced Computer Science and Information Systems (ICACSIS)\",\"volume\":\"227 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Advanced Computer Science and Information Systems (ICACSIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACSIS56558.2022.9923513\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Advanced Computer Science and Information Systems (ICACSIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACSIS56558.2022.9923513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了几种利用光容积脉搏波(PPG)信号测量血糖水平(BGL)的前沿无创技术。这些方法可以使用人工智能算法(AI)高效而精确地执行。确定一个人体内是否存在健康问题的最重要参数是血糖。血液循环的状态反映在PPG信号上。基于ppg的BGL测量利用AI是一种非侵入性的测量方法,因为目前BGL测量仍然是侵入性的。本研究使用2009年至2022年间收集的数据来研究这项技术的发展。采用PPG信号和人工智能技术的无创BGL的未来前景看好。进一步的研究可能会使用本综述中方法映射的结果作为决定使用哪种BGL测量方法的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Review of Non-Invasive Monitoring of Blood Glucose Levels Based on Photoplethysmography Signals Using Artificial Intelligence
This paper discusses several cutting-edge non-invasive techniques for measuring blood glucose levels (BGL) using photoplethysmography (PPG) signals. These methods can be efficiently and precisely carried out using artificial intelligence algorithms (AI). The most important parameter for identifying the presence of health issues in a person's body is blood glucose. The state of blood circulation is reflected in the PPG signal. PPG-based BGL measurement utilizing AI is a non-invasive measurement approach because BGL measurement is still currently invasive. This study examines the development of this technology using data collected between 2009 and 2022. The future of non-invasive BGL employing PPG signals with artificial intelligence technology looks promising. Further studies may use the findings of the methodological mapping in this review as a guidance when deciding which BGL measuring methodology to use.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信