无参考度量BM3D去噪算法参数的选择

N. Mamaev, D. Yurin, A. Krylov
{"title":"无参考度量BM3D去噪算法参数的选择","authors":"N. Mamaev, D. Yurin, A. Krylov","doi":"10.1109/EUVIP.2018.8611679","DOIUrl":null,"url":null,"abstract":"An automatic multiscale algorithm for Block-matching and 3D filtering (BM3D) method de noising parameter selection has been proposed. To optimize the filtering parameter the presence of retained structures in the ridge areas is analysed for the difference of the initial noisy and filtered images. Appearance of regular components on method noise is controlled using mutual information. An estimation of image characteristic details is based on Hessian matrix eigenvalues analysis. Images with added controlled Gaussian noise from general image TID2013 and BSDS500 databases were used for testing. It was found that the proposed no-reference metric outperforms existing no-reference metrics in selecting optimal denoising parameter. Algorithm calculation time does not depend on the image noise level and looks promising to be used in image adaptive BM3D-based methods.","PeriodicalId":252212,"journal":{"name":"2018 7th European Workshop on Visual Information Processing (EUVIP)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Choice of the Parameter for BM3D Denoising Algorithm Using No- Reference Metric\",\"authors\":\"N. Mamaev, D. Yurin, A. Krylov\",\"doi\":\"10.1109/EUVIP.2018.8611679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An automatic multiscale algorithm for Block-matching and 3D filtering (BM3D) method de noising parameter selection has been proposed. To optimize the filtering parameter the presence of retained structures in the ridge areas is analysed for the difference of the initial noisy and filtered images. Appearance of regular components on method noise is controlled using mutual information. An estimation of image characteristic details is based on Hessian matrix eigenvalues analysis. Images with added controlled Gaussian noise from general image TID2013 and BSDS500 databases were used for testing. It was found that the proposed no-reference metric outperforms existing no-reference metrics in selecting optimal denoising parameter. Algorithm calculation time does not depend on the image noise level and looks promising to be used in image adaptive BM3D-based methods.\",\"PeriodicalId\":252212,\"journal\":{\"name\":\"2018 7th European Workshop on Visual Information Processing (EUVIP)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 7th European Workshop on Visual Information Processing (EUVIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUVIP.2018.8611679\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 7th European Workshop on Visual Information Processing (EUVIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUVIP.2018.8611679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

提出了一种自动多尺度分块匹配和三维滤波(BM3D)方法去噪参数选择算法。为了优化滤波参数,分析了带噪图像和滤波图像在脊区是否存在残留结构。利用互信息控制方法噪声中规则分量的出现。图像特征细节的估计是基于Hessian矩阵特征值分析。使用从通用图像TID2013和BSDS500数据库中添加可控高斯噪声的图像进行测试。结果表明,所提出的无参考度量在选择最优去噪参数方面优于现有的无参考度量。算法计算时间不依赖于图像噪声水平,有望应用于基于图像自适应bm3d的方法中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Choice of the Parameter for BM3D Denoising Algorithm Using No- Reference Metric
An automatic multiscale algorithm for Block-matching and 3D filtering (BM3D) method de noising parameter selection has been proposed. To optimize the filtering parameter the presence of retained structures in the ridge areas is analysed for the difference of the initial noisy and filtered images. Appearance of regular components on method noise is controlled using mutual information. An estimation of image characteristic details is based on Hessian matrix eigenvalues analysis. Images with added controlled Gaussian noise from general image TID2013 and BSDS500 databases were used for testing. It was found that the proposed no-reference metric outperforms existing no-reference metrics in selecting optimal denoising parameter. Algorithm calculation time does not depend on the image noise level and looks promising to be used in image adaptive BM3D-based methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信