使用FIGARCH-skT规范预测多期风险价值和预期不足的蒙特卡罗模拟方法

Stavros Degiannakis, P. Dent, Christos Floros
{"title":"使用FIGARCH-skT规范预测多期风险价值和预期不足的蒙特卡罗模拟方法","authors":"Stavros Degiannakis, P. Dent, Christos Floros","doi":"10.2139/ssrn.3259844","DOIUrl":null,"url":null,"abstract":"In financial literature, Value-at-Risk (VaR) and Expected Shortfall (ES) modelling is focused on producing 1-step ahead conditional variance forecasts. The present paper provides a methodological contribution to the multi-step VaR and ES forecasting through a new adaptation of the Monte Carlo simulation approach for forecasting multi-period volatility to a fractionally integrated GARCH framework for leptokurtic and asymmetrically distributed portfolio returns. Accounting for long memory within the conditional variance process with skewed Student-t (skT) conditionally distributed innovations, accurate 95% and 99% VaR and ES forecasts are calculated for multi-period time horizons. The results show that the FIGARCH-skT model has a superior multi-period VaR and ES forecasting performance.","PeriodicalId":203996,"journal":{"name":"ERN: Value-at-Risk (Topic)","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Monte Carlo Simulation Approach to Forecasting Multi-period Value-at-Risk and Expected Shortfall Using the FIGARCH-skT Specification\",\"authors\":\"Stavros Degiannakis, P. Dent, Christos Floros\",\"doi\":\"10.2139/ssrn.3259844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In financial literature, Value-at-Risk (VaR) and Expected Shortfall (ES) modelling is focused on producing 1-step ahead conditional variance forecasts. The present paper provides a methodological contribution to the multi-step VaR and ES forecasting through a new adaptation of the Monte Carlo simulation approach for forecasting multi-period volatility to a fractionally integrated GARCH framework for leptokurtic and asymmetrically distributed portfolio returns. Accounting for long memory within the conditional variance process with skewed Student-t (skT) conditionally distributed innovations, accurate 95% and 99% VaR and ES forecasts are calculated for multi-period time horizons. The results show that the FIGARCH-skT model has a superior multi-period VaR and ES forecasting performance.\",\"PeriodicalId\":203996,\"journal\":{\"name\":\"ERN: Value-at-Risk (Topic)\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Value-at-Risk (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3259844\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Value-at-Risk (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3259844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在金融文献中,风险价值(VaR)和预期缺口(ES)模型的重点是产生提前一步的条件方差预测。本文通过将预测多期波动率的蒙特卡罗模拟方法应用于细峰和非对称分布投资组合收益的分数积分GARCH框架,为多步VaR和ES预测提供了方法上的贡献。考虑到条件方差过程中的长记忆,倾斜的学生t (skT)条件分布创新,在多时期的时间范围内计算出准确的95%和99% VaR和ES预测。结果表明,FIGARCH-skT模型具有较好的多周期VaR和ES预测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Monte Carlo Simulation Approach to Forecasting Multi-period Value-at-Risk and Expected Shortfall Using the FIGARCH-skT Specification
In financial literature, Value-at-Risk (VaR) and Expected Shortfall (ES) modelling is focused on producing 1-step ahead conditional variance forecasts. The present paper provides a methodological contribution to the multi-step VaR and ES forecasting through a new adaptation of the Monte Carlo simulation approach for forecasting multi-period volatility to a fractionally integrated GARCH framework for leptokurtic and asymmetrically distributed portfolio returns. Accounting for long memory within the conditional variance process with skewed Student-t (skT) conditionally distributed innovations, accurate 95% and 99% VaR and ES forecasts are calculated for multi-period time horizons. The results show that the FIGARCH-skT model has a superior multi-period VaR and ES forecasting performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信