基于改进深度学习的糖尿病视网膜病变分期分类

P. Sudarmadji, Prisca Deviani Pakan, Rocky Yefrenes Dillak
{"title":"基于改进深度学习的糖尿病视网膜病变分期分类","authors":"P. Sudarmadji, Prisca Deviani Pakan, Rocky Yefrenes Dillak","doi":"10.1109/ICIMCIS51567.2020.9354281","DOIUrl":null,"url":null,"abstract":"Diabetic Retinopathy (DR) is the most common complication of diabetes mellitus which can cause a loss in vision. The stages of DR can be divided as no DR, non-proliferative DR, and proliferative DR. This paper proposed a method to classify stages of DR using deep learning and genetics algorithm. This research developed an optimal architecture using VGG basic architecture of a convolutional neural network. The results obtained from the Messidor database were 99.66 % accuracy, 99 % sensitivity, and 98 % specificity. Meanwhile, when tested with the Kaggle database the proposed method produced sensitivity, specificity, and accuracy of 98%, 97%, 98.43% respectively. These results show that the method could classify the DR images","PeriodicalId":441670,"journal":{"name":"2020 International Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Diabetic Retinopathy Stages Classification using Improved Deep Learning\",\"authors\":\"P. Sudarmadji, Prisca Deviani Pakan, Rocky Yefrenes Dillak\",\"doi\":\"10.1109/ICIMCIS51567.2020.9354281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diabetic Retinopathy (DR) is the most common complication of diabetes mellitus which can cause a loss in vision. The stages of DR can be divided as no DR, non-proliferative DR, and proliferative DR. This paper proposed a method to classify stages of DR using deep learning and genetics algorithm. This research developed an optimal architecture using VGG basic architecture of a convolutional neural network. The results obtained from the Messidor database were 99.66 % accuracy, 99 % sensitivity, and 98 % specificity. Meanwhile, when tested with the Kaggle database the proposed method produced sensitivity, specificity, and accuracy of 98%, 97%, 98.43% respectively. These results show that the method could classify the DR images\",\"PeriodicalId\":441670,\"journal\":{\"name\":\"2020 International Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS)\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIMCIS51567.2020.9354281\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIMCIS51567.2020.9354281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

糖尿病视网膜病变(DR)是糖尿病最常见的并发症,可导致视力丧失。DR的阶段可分为无DR、非增殖性DR和增殖性DR。本文提出了一种基于深度学习和遗传算法的DR阶段分类方法。本研究利用卷积神经网络的VGG基本结构开发了一种优化的结构。从Messidor数据库获得的结果准确率为99.66%,灵敏度为99%,特异性为98%。同时,在Kaggle数据库中,该方法的灵敏度、特异度和准确度分别为98%、97%和98.43%。结果表明,该方法可以对DR图像进行分类
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diabetic Retinopathy Stages Classification using Improved Deep Learning
Diabetic Retinopathy (DR) is the most common complication of diabetes mellitus which can cause a loss in vision. The stages of DR can be divided as no DR, non-proliferative DR, and proliferative DR. This paper proposed a method to classify stages of DR using deep learning and genetics algorithm. This research developed an optimal architecture using VGG basic architecture of a convolutional neural network. The results obtained from the Messidor database were 99.66 % accuracy, 99 % sensitivity, and 98 % specificity. Meanwhile, when tested with the Kaggle database the proposed method produced sensitivity, specificity, and accuracy of 98%, 97%, 98.43% respectively. These results show that the method could classify the DR images
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信