闵可夫斯基空间中的最大管状超曲面

V. Klyachin, V. Miklyukov
{"title":"闵可夫斯基空间中的最大管状超曲面","authors":"V. Klyachin, V. Miklyukov","doi":"10.1070/IM1992V038N01ABEH002194","DOIUrl":null,"url":null,"abstract":"Consider -solutions of the equations for maximal surfaces in Minkowski space The hypersurface is tubular if for every the level sets are compact. The girth function of a tubular hypersurface is given by . In this paper it is shown that the girth function of a maximal tubular surface satisfies the differential inequality . As a consequence of this assertion it is established that the union of the rays tangent to the hypersurface at an isolated singular point forms the light cone; a bound is obtained, in the neighborhood of an isolated singularity, to the spread of the maximal tube in the direction of the time axis in terms of its deviation from the light cone.","PeriodicalId":159459,"journal":{"name":"Mathematics of The Ussr-izvestiya","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"MAXIMAL TUBULAR HYPERSURFACES IN MINKOWSKI SPACE\",\"authors\":\"V. Klyachin, V. Miklyukov\",\"doi\":\"10.1070/IM1992V038N01ABEH002194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider -solutions of the equations for maximal surfaces in Minkowski space The hypersurface is tubular if for every the level sets are compact. The girth function of a tubular hypersurface is given by . In this paper it is shown that the girth function of a maximal tubular surface satisfies the differential inequality . As a consequence of this assertion it is established that the union of the rays tangent to the hypersurface at an isolated singular point forms the light cone; a bound is obtained, in the neighborhood of an isolated singularity, to the spread of the maximal tube in the direction of the time axis in terms of its deviation from the light cone.\",\"PeriodicalId\":159459,\"journal\":{\"name\":\"Mathematics of The Ussr-izvestiya\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics of The Ussr-izvestiya\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1070/IM1992V038N01ABEH002194\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of The Ussr-izvestiya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1070/IM1992V038N01ABEH002194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

考虑Minkowski空间中极大曲面方程的-解,如果每个水平集都是紧致的,则超曲面是管状的。管状超曲面的周长函数由。本文证明了极大管状曲面的周长函数满足微分不等式。根据这一论断,我们确定了在孤立奇点处与超曲面相切的光线的并并形成光锥;在孤立奇点的邻域中,得到了最大管在时间轴方向上的扩展的界,它与光锥的偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MAXIMAL TUBULAR HYPERSURFACES IN MINKOWSKI SPACE
Consider -solutions of the equations for maximal surfaces in Minkowski space The hypersurface is tubular if for every the level sets are compact. The girth function of a tubular hypersurface is given by . In this paper it is shown that the girth function of a maximal tubular surface satisfies the differential inequality . As a consequence of this assertion it is established that the union of the rays tangent to the hypersurface at an isolated singular point forms the light cone; a bound is obtained, in the neighborhood of an isolated singularity, to the spread of the maximal tube in the direction of the time axis in terms of its deviation from the light cone.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信