单语无词政治宣言的文本分类

Arsenii Rasov, I. Obabkov, E. Olbrich, Ivan P. Yamshchikov
{"title":"单语无词政治宣言的文本分类","authors":"Arsenii Rasov, I. Obabkov, E. Olbrich, Ivan P. Yamshchikov","doi":"10.5220/0009792101490154","DOIUrl":null,"url":null,"abstract":"In this position paper, we implement an automatic coding algorithm for electoral programs from the Manifesto Project Database. We propose a new approach that works with new words that are out of the training vocabulary, replacing them with the words from training vocabulary that are the closest neighbors in the space of word embeddings. A set of simulations demonstrates that the proposed algorithm shows classification accuracy comparable to the state-of-the-art benchmarks for monolingual multi-label classification. The agreement levels for the algorithm is comparable with manual labeling. The results for a broad set of model hyperparameters are compared to each other.","PeriodicalId":414016,"journal":{"name":"International Conference on Complex Information Systems","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Text Classification for Monolingual Political Manifestos with Words Out of Vocabulary\",\"authors\":\"Arsenii Rasov, I. Obabkov, E. Olbrich, Ivan P. Yamshchikov\",\"doi\":\"10.5220/0009792101490154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this position paper, we implement an automatic coding algorithm for electoral programs from the Manifesto Project Database. We propose a new approach that works with new words that are out of the training vocabulary, replacing them with the words from training vocabulary that are the closest neighbors in the space of word embeddings. A set of simulations demonstrates that the proposed algorithm shows classification accuracy comparable to the state-of-the-art benchmarks for monolingual multi-label classification. The agreement levels for the algorithm is comparable with manual labeling. The results for a broad set of model hyperparameters are compared to each other.\",\"PeriodicalId\":414016,\"journal\":{\"name\":\"International Conference on Complex Information Systems\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Complex Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0009792101490154\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Complex Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0009792101490154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在这篇论文中,我们实现了一种来自宣言项目数据库的选举程序自动编码算法。我们提出了一种新的方法,可以处理训练词汇表之外的新词,用单词嵌入空间中最近邻的训练词汇表中的单词替换它们。一组仿真表明,该算法的分类精度可与单语言多标签分类的最新基准相媲美。该算法的一致性水平与人工标注相当。对一组广泛的模型超参数的结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Text Classification for Monolingual Political Manifestos with Words Out of Vocabulary
In this position paper, we implement an automatic coding algorithm for electoral programs from the Manifesto Project Database. We propose a new approach that works with new words that are out of the training vocabulary, replacing them with the words from training vocabulary that are the closest neighbors in the space of word embeddings. A set of simulations demonstrates that the proposed algorithm shows classification accuracy comparable to the state-of-the-art benchmarks for monolingual multi-label classification. The agreement levels for the algorithm is comparable with manual labeling. The results for a broad set of model hyperparameters are compared to each other.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信