Sergio Castelló-Palacios, A. Vallés-Lluch, C. García-Pardo, A. Fornés-Leal, N. Cardona
{"title":"在2.4 GHz ISM波段易于准备的定制幻影的公式","authors":"Sergio Castelló-Palacios, A. Vallés-Lluch, C. García-Pardo, A. Fornés-Leal, N. Cardona","doi":"10.1109/ISMICT.2017.7891760","DOIUrl":null,"url":null,"abstract":"Emerging integration of communication networks into wearable or implantable body devices involves a challenge due to the transmitting medium, the body itself. This medium is heterogeneous and lossier than air, so devices that are supposed to work on it should be tested in tissue-equivalent materials. A number of materials with the electromagnetic response of body tissues have been proposed. Most of them are sucrose aqueous solutions that are supposed to simulate human's muscle tissue mainly within medical frequency bands. However, these recipes are restricted to a single tissue and it is difficult to adapt them to fit the permittivity values of different body tissues. The significance of this study lies in the development of a mathematical relationship that models the dielectric properties of an aqueous solution according to the concentration of sugar and salt at 2.4 GHz, the frequency around which an Industrial, Scientific and Medical (ISM) band is placed. Thus, it becomes possible to create custom-made phantoms with simple and accessible ingredients that are easy to prepare in any laboratory.","PeriodicalId":333786,"journal":{"name":"2017 11th International Symposium on Medical Information and Communication Technology (ISMICT)","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Formulas for easy-to-prepare tailored phantoms at 2.4 GHz ISM band\",\"authors\":\"Sergio Castelló-Palacios, A. Vallés-Lluch, C. García-Pardo, A. Fornés-Leal, N. Cardona\",\"doi\":\"10.1109/ISMICT.2017.7891760\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Emerging integration of communication networks into wearable or implantable body devices involves a challenge due to the transmitting medium, the body itself. This medium is heterogeneous and lossier than air, so devices that are supposed to work on it should be tested in tissue-equivalent materials. A number of materials with the electromagnetic response of body tissues have been proposed. Most of them are sucrose aqueous solutions that are supposed to simulate human's muscle tissue mainly within medical frequency bands. However, these recipes are restricted to a single tissue and it is difficult to adapt them to fit the permittivity values of different body tissues. The significance of this study lies in the development of a mathematical relationship that models the dielectric properties of an aqueous solution according to the concentration of sugar and salt at 2.4 GHz, the frequency around which an Industrial, Scientific and Medical (ISM) band is placed. Thus, it becomes possible to create custom-made phantoms with simple and accessible ingredients that are easy to prepare in any laboratory.\",\"PeriodicalId\":333786,\"journal\":{\"name\":\"2017 11th International Symposium on Medical Information and Communication Technology (ISMICT)\",\"volume\":\"121 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 11th International Symposium on Medical Information and Communication Technology (ISMICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMICT.2017.7891760\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 11th International Symposium on Medical Information and Communication Technology (ISMICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMICT.2017.7891760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Formulas for easy-to-prepare tailored phantoms at 2.4 GHz ISM band
Emerging integration of communication networks into wearable or implantable body devices involves a challenge due to the transmitting medium, the body itself. This medium is heterogeneous and lossier than air, so devices that are supposed to work on it should be tested in tissue-equivalent materials. A number of materials with the electromagnetic response of body tissues have been proposed. Most of them are sucrose aqueous solutions that are supposed to simulate human's muscle tissue mainly within medical frequency bands. However, these recipes are restricted to a single tissue and it is difficult to adapt them to fit the permittivity values of different body tissues. The significance of this study lies in the development of a mathematical relationship that models the dielectric properties of an aqueous solution according to the concentration of sugar and salt at 2.4 GHz, the frequency around which an Industrial, Scientific and Medical (ISM) band is placed. Thus, it becomes possible to create custom-made phantoms with simple and accessible ingredients that are easy to prepare in any laboratory.