基于分形模型的医学图像压缩

M. Loew, Dunling Li
{"title":"基于分形模型的医学图像压缩","authors":"M. Loew, Dunling Li","doi":"10.1109/IEMBS.1994.412181","DOIUrl":null,"url":null,"abstract":"To compress medical images in a lossy way that preserves their diagnostic value, the authors have combined lossless compression techniques with a fractal image compression method using two kinds of iterated function systems: partitioned, and condensation-model. The algorithm appears to yield a compression ratio of about 15:1 without perceptible degradation.<<ETX>>","PeriodicalId":344622,"journal":{"name":"Proceedings of 16th Annual International Conference of the IEEE Engineering in Medicine and Biology Society","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Medical image compression using a fractal model with condensation\",\"authors\":\"M. Loew, Dunling Li\",\"doi\":\"10.1109/IEMBS.1994.412181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To compress medical images in a lossy way that preserves their diagnostic value, the authors have combined lossless compression techniques with a fractal image compression method using two kinds of iterated function systems: partitioned, and condensation-model. The algorithm appears to yield a compression ratio of about 15:1 without perceptible degradation.<<ETX>>\",\"PeriodicalId\":344622,\"journal\":{\"name\":\"Proceedings of 16th Annual International Conference of the IEEE Engineering in Medicine and Biology Society\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 16th Annual International Conference of the IEEE Engineering in Medicine and Biology Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEMBS.1994.412181\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 16th Annual International Conference of the IEEE Engineering in Medicine and Biology Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMBS.1994.412181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

为了以有损的方式压缩医学图像,保留其诊断价值,作者将无损压缩技术与分形图像压缩方法结合起来,使用两种迭代函数系统:分区和凝聚模型。该算法似乎产生了约15:1的压缩比,而没有明显的退化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Medical image compression using a fractal model with condensation
To compress medical images in a lossy way that preserves their diagnostic value, the authors have combined lossless compression techniques with a fractal image compression method using two kinds of iterated function systems: partitioned, and condensation-model. The algorithm appears to yield a compression ratio of about 15:1 without perceptible degradation.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信