对比度和结构特征对改进彩色图像分类系统的意义

V. Sowmya, D. Govind, K. Soman
{"title":"对比度和结构特征对改进彩色图像分类系统的意义","authors":"V. Sowmya, D. Govind, K. Soman","doi":"10.1109/ICSIPA.2017.8120608","DOIUrl":null,"url":null,"abstract":"In general, the three main modules of color image classification systems are: color-to-grayscale image conversion, feature extraction and classification. The color-to-grayscale image conversion is the important pre-processing step which must incorporate the significant and discriminative contrast and structure information in the converted grayscale images as in the original color image. All the existing techniques for color-to-grayscale image conversion preserves the significant contrast and structure information in the converted grayscale images in different manners. Hence, the present work is to analyze the significant and discriminative contrast and structure information preserved in the converted grayscale images using two different decolorization techniques called rgb2gray and singular value decomposition based color-to-grayscale image conversion (SVD) applied in the color image classification systems using the three different proposed features. The three different features for color image classification systems are proposed based on the combination of the existing dense SIFT features and the contrast & structure content computed using color-to-gray structure similarity index (C2G-SSIM) metric.","PeriodicalId":268112,"journal":{"name":"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Significance of contrast and structure features for an improved color image classification system\",\"authors\":\"V. Sowmya, D. Govind, K. Soman\",\"doi\":\"10.1109/ICSIPA.2017.8120608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In general, the three main modules of color image classification systems are: color-to-grayscale image conversion, feature extraction and classification. The color-to-grayscale image conversion is the important pre-processing step which must incorporate the significant and discriminative contrast and structure information in the converted grayscale images as in the original color image. All the existing techniques for color-to-grayscale image conversion preserves the significant contrast and structure information in the converted grayscale images in different manners. Hence, the present work is to analyze the significant and discriminative contrast and structure information preserved in the converted grayscale images using two different decolorization techniques called rgb2gray and singular value decomposition based color-to-grayscale image conversion (SVD) applied in the color image classification systems using the three different proposed features. The three different features for color image classification systems are proposed based on the combination of the existing dense SIFT features and the contrast & structure content computed using color-to-gray structure similarity index (C2G-SSIM) metric.\",\"PeriodicalId\":268112,\"journal\":{\"name\":\"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSIPA.2017.8120608\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIPA.2017.8120608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

一般来说,彩色图像分类系统的三个主要模块是:彩色到灰度图像转换、特征提取和分类。彩色图像到灰度图像的转换是重要的预处理步骤,它必须将转换后的灰度图像中具有显著性和判别性的对比度和结构信息与原彩色图像中的信息相结合。现有的彩色-灰度图像转换技术都以不同的方式保留了转换后的灰度图像中重要的对比度和结构信息。因此,本文的工作是利用rgb2gray和基于奇异值分解的彩色到灰度图像转换(SVD)两种不同的脱色技术,利用这三种不同的特征,分析转换后的灰度图像中保留的显著性和判别性对比度和结构信息。结合现有的密集SIFT特征和利用色灰结构相似指数(C2G-SSIM)度量计算的对比度和结构含量,提出了用于彩色图像分类系统的三种不同特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Significance of contrast and structure features for an improved color image classification system
In general, the three main modules of color image classification systems are: color-to-grayscale image conversion, feature extraction and classification. The color-to-grayscale image conversion is the important pre-processing step which must incorporate the significant and discriminative contrast and structure information in the converted grayscale images as in the original color image. All the existing techniques for color-to-grayscale image conversion preserves the significant contrast and structure information in the converted grayscale images in different manners. Hence, the present work is to analyze the significant and discriminative contrast and structure information preserved in the converted grayscale images using two different decolorization techniques called rgb2gray and singular value decomposition based color-to-grayscale image conversion (SVD) applied in the color image classification systems using the three different proposed features. The three different features for color image classification systems are proposed based on the combination of the existing dense SIFT features and the contrast & structure content computed using color-to-gray structure similarity index (C2G-SSIM) metric.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信