提高金属硅结可靠性的石墨碳硅触点

M. Stelzer, F. Kreupl
{"title":"提高金属硅结可靠性的石墨碳硅触点","authors":"M. Stelzer, F. Kreupl","doi":"10.1109/IEDM.2016.7838469","DOIUrl":null,"url":null,"abstract":"Contact resistance and thermal degradation of metal-silicon contacts are challenges in nanoscale CMOS as well as in power device applications. Titanium silicide (TiSi) contacts are commonly used metal-silicon contacts, but are known to diffuse into the active region under high current stress. In this paper we show that a graphenic carbon (C) contact deposited on n-type silicon (C-Si) by CVD, has the same low Schottky barrier height of 0.45 eV as TiSi, but a much improved reliability against high current stress. The C-Si contact is over 108 times more stable against high current stress pulses than the conventionally used TiSi junction. The C-Si contact properties even show promise to establish an ultra-low, high temperature stable contact resistance. The finding has important consequences for the enhancement of reliability in power devices as well as in Schottky-diodes and electrical contacts to silicon in general.","PeriodicalId":186544,"journal":{"name":"2016 IEEE International Electron Devices Meeting (IEDM)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Graphenic carbon-silicon contacts for reliability improvement of metal-silicon junctions\",\"authors\":\"M. Stelzer, F. Kreupl\",\"doi\":\"10.1109/IEDM.2016.7838469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Contact resistance and thermal degradation of metal-silicon contacts are challenges in nanoscale CMOS as well as in power device applications. Titanium silicide (TiSi) contacts are commonly used metal-silicon contacts, but are known to diffuse into the active region under high current stress. In this paper we show that a graphenic carbon (C) contact deposited on n-type silicon (C-Si) by CVD, has the same low Schottky barrier height of 0.45 eV as TiSi, but a much improved reliability against high current stress. The C-Si contact is over 108 times more stable against high current stress pulses than the conventionally used TiSi junction. The C-Si contact properties even show promise to establish an ultra-low, high temperature stable contact resistance. The finding has important consequences for the enhancement of reliability in power devices as well as in Schottky-diodes and electrical contacts to silicon in general.\",\"PeriodicalId\":186544,\"journal\":{\"name\":\"2016 IEEE International Electron Devices Meeting (IEDM)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Electron Devices Meeting (IEDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEDM.2016.7838469\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Electron Devices Meeting (IEDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2016.7838469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

金属硅触点的接触电阻和热降解是纳米级CMOS和功率器件应用中面临的挑战。硅化钛(TiSi)触点是常用的金属硅触点,但已知在大电流应力下会扩散到有源区。在本文中,我们证明了通过CVD沉积在n型硅(C- si)上的石墨碳(C)触点具有与TiSi相同的0.45 eV的肖特基势垒高度,但在高电流应力下的可靠性大大提高。C-Si接触在高电流应力脉冲下的稳定性是传统使用的TiSi结的108倍以上。C-Si接触特性甚至显示出建立超低、高温稳定接触电阻的希望。这一发现对于提高功率器件、肖特基二极管和硅电触点的可靠性具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Graphenic carbon-silicon contacts for reliability improvement of metal-silicon junctions
Contact resistance and thermal degradation of metal-silicon contacts are challenges in nanoscale CMOS as well as in power device applications. Titanium silicide (TiSi) contacts are commonly used metal-silicon contacts, but are known to diffuse into the active region under high current stress. In this paper we show that a graphenic carbon (C) contact deposited on n-type silicon (C-Si) by CVD, has the same low Schottky barrier height of 0.45 eV as TiSi, but a much improved reliability against high current stress. The C-Si contact is over 108 times more stable against high current stress pulses than the conventionally used TiSi junction. The C-Si contact properties even show promise to establish an ultra-low, high temperature stable contact resistance. The finding has important consequences for the enhancement of reliability in power devices as well as in Schottky-diodes and electrical contacts to silicon in general.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信