基于对约束对称非负矩阵分解的社交网络社区检测

Xiaohua Shi, Hongtao Lu, Yangcheng He, Shan He
{"title":"基于对约束对称非负矩阵分解的社交网络社区检测","authors":"Xiaohua Shi, Hongtao Lu, Yangcheng He, Shan He","doi":"10.1145/2808797.2809383","DOIUrl":null,"url":null,"abstract":"Non-negative Matrix Factorization (NMF) aims to find two non-negative matrices whose product approximates the original matrix well, and is widely used in clustering condition with good physical interpretability and universal applicability. Detecting communities with NMF can keep non-negative network physical definition and effectively capture communities-based structure in the low dimensional data space. However some NMF methods in community detection did not concern with more network inner structures or existing ground-truth community information. In this paper, we propose a novel pairwisely constrained non-negative symmetric matrix factorization (PCSNMF) method, which not only consider symmetric community structures of undirected network, but also takes into consideration the pairwise constraints generated from some ground-truth group information to enhance the community detection. We compare our approaches with other NMF-based methods in three social networks, and experimental results for community detection show that our approaches are all feasible and achieve better community detection results.","PeriodicalId":371988,"journal":{"name":"2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","volume":"127 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":"{\"title\":\"Community detection in social network with pairwisely constrained symmetric non-negative matrix factorization\",\"authors\":\"Xiaohua Shi, Hongtao Lu, Yangcheng He, Shan He\",\"doi\":\"10.1145/2808797.2809383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Non-negative Matrix Factorization (NMF) aims to find two non-negative matrices whose product approximates the original matrix well, and is widely used in clustering condition with good physical interpretability and universal applicability. Detecting communities with NMF can keep non-negative network physical definition and effectively capture communities-based structure in the low dimensional data space. However some NMF methods in community detection did not concern with more network inner structures or existing ground-truth community information. In this paper, we propose a novel pairwisely constrained non-negative symmetric matrix factorization (PCSNMF) method, which not only consider symmetric community structures of undirected network, but also takes into consideration the pairwise constraints generated from some ground-truth group information to enhance the community detection. We compare our approaches with other NMF-based methods in three social networks, and experimental results for community detection show that our approaches are all feasible and achieve better community detection results.\",\"PeriodicalId\":371988,\"journal\":{\"name\":\"2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)\",\"volume\":\"127 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"48\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2808797.2809383\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2808797.2809383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

摘要

非负矩阵分解(non- Matrix Factorization, NMF)旨在寻找两个乘积与原矩阵非常接近的非负矩阵,具有良好的物理可解释性和普遍适用性,广泛应用于聚类条件。利用NMF检测社区可以保持非负的网络物理定义,并在低维数据空间中有效捕获基于社区的结构。然而,一些NMF方法在社区检测中没有考虑到更多的网络内部结构或现有的地真社区信息。本文提出了一种新的对约束非负对称矩阵分解(PCSNMF)方法,该方法不仅考虑了无向网络的对称社团结构,而且考虑了由一些基真群信息产生的成对约束,以增强社团检测能力。我们将我们的方法与其他基于nmf的方法在三种社会网络中的社区检测进行了比较,实验结果表明我们的方法都是可行的,并且取得了更好的社区检测结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Community detection in social network with pairwisely constrained symmetric non-negative matrix factorization
Non-negative Matrix Factorization (NMF) aims to find two non-negative matrices whose product approximates the original matrix well, and is widely used in clustering condition with good physical interpretability and universal applicability. Detecting communities with NMF can keep non-negative network physical definition and effectively capture communities-based structure in the low dimensional data space. However some NMF methods in community detection did not concern with more network inner structures or existing ground-truth community information. In this paper, we propose a novel pairwisely constrained non-negative symmetric matrix factorization (PCSNMF) method, which not only consider symmetric community structures of undirected network, but also takes into consideration the pairwise constraints generated from some ground-truth group information to enhance the community detection. We compare our approaches with other NMF-based methods in three social networks, and experimental results for community detection show that our approaches are all feasible and achieve better community detection results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信