Yali Wang, Bas van Stein, Thomas Bäck, M. Emmerich
{"title":"多目标柔性作业车间调度的定制NSGA-III","authors":"Yali Wang, Bas van Stein, Thomas Bäck, M. Emmerich","doi":"10.1109/SSCI47803.2020.9308373","DOIUrl":null,"url":null,"abstract":"A customized multi-objective evolutionary algorithm (MOEA) is proposed for the flexible job shop scheduling problem (FJSP) with three objectives: makespan, total workload, critical workload. In general, the algorithm can be integrated with any standard MOEA. In this paper, it has been combined with NSGA-III to solve the state-of-the-art benchmark FJSPs, whereas an off-the-shelf implementation of NSGA-III is not capable of solving them. Most importantly, we use the various algorithm adaptations to enhance the performance of our algorithm. To be specific, it uses smart initialization approaches to enrich the first-generation population, and proposes new crossover operator to create a better diversity on the Pareto front approximation. The MIP-EGO configurator is adopted to automatically tune the mutation probabilities, which are important hyper-parameters of the algorithm. Furthermore, different local search strategies are employed to explore the neighborhood for better solutions. The experimental results from the combination of these techniques show the good performance as compared to classical evolutionary scheduling algorithms and it requires less computing budget. Even some previously unknown non-dominated solutions for the BRdata benchmark problems could be discovered.","PeriodicalId":413489,"journal":{"name":"2020 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Tailored NSGA-III for Multi-objective Flexible Job Shop Scheduling\",\"authors\":\"Yali Wang, Bas van Stein, Thomas Bäck, M. Emmerich\",\"doi\":\"10.1109/SSCI47803.2020.9308373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A customized multi-objective evolutionary algorithm (MOEA) is proposed for the flexible job shop scheduling problem (FJSP) with three objectives: makespan, total workload, critical workload. In general, the algorithm can be integrated with any standard MOEA. In this paper, it has been combined with NSGA-III to solve the state-of-the-art benchmark FJSPs, whereas an off-the-shelf implementation of NSGA-III is not capable of solving them. Most importantly, we use the various algorithm adaptations to enhance the performance of our algorithm. To be specific, it uses smart initialization approaches to enrich the first-generation population, and proposes new crossover operator to create a better diversity on the Pareto front approximation. The MIP-EGO configurator is adopted to automatically tune the mutation probabilities, which are important hyper-parameters of the algorithm. Furthermore, different local search strategies are employed to explore the neighborhood for better solutions. The experimental results from the combination of these techniques show the good performance as compared to classical evolutionary scheduling algorithms and it requires less computing budget. Even some previously unknown non-dominated solutions for the BRdata benchmark problems could be discovered.\",\"PeriodicalId\":413489,\"journal\":{\"name\":\"2020 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSCI47803.2020.9308373\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI47803.2020.9308373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Tailored NSGA-III for Multi-objective Flexible Job Shop Scheduling
A customized multi-objective evolutionary algorithm (MOEA) is proposed for the flexible job shop scheduling problem (FJSP) with three objectives: makespan, total workload, critical workload. In general, the algorithm can be integrated with any standard MOEA. In this paper, it has been combined with NSGA-III to solve the state-of-the-art benchmark FJSPs, whereas an off-the-shelf implementation of NSGA-III is not capable of solving them. Most importantly, we use the various algorithm adaptations to enhance the performance of our algorithm. To be specific, it uses smart initialization approaches to enrich the first-generation population, and proposes new crossover operator to create a better diversity on the Pareto front approximation. The MIP-EGO configurator is adopted to automatically tune the mutation probabilities, which are important hyper-parameters of the algorithm. Furthermore, different local search strategies are employed to explore the neighborhood for better solutions. The experimental results from the combination of these techniques show the good performance as compared to classical evolutionary scheduling algorithms and it requires less computing budget. Even some previously unknown non-dominated solutions for the BRdata benchmark problems could be discovered.