面向放射学的视觉对话

Olga Kovaleva, Chaitanya P. Shivade, Satyananda Kashyap, Karina Kanjaria, Joy T. Wu, Deddeh Ballah, Adam Coy, A. Karargyris, Yufan Guo, D. Beymer, Anna Rumshisky, Vandana V. Mukherjee
{"title":"面向放射学的视觉对话","authors":"Olga Kovaleva, Chaitanya P. Shivade, Satyananda Kashyap, Karina Kanjaria, Joy T. Wu, Deddeh Ballah, Adam Coy, A. Karargyris, Yufan Guo, D. Beymer, Anna Rumshisky, Vandana V. Mukherjee","doi":"10.18653/v1/2020.bionlp-1.6","DOIUrl":null,"url":null,"abstract":"Current research in machine learning for radiology is focused mostly on images. There exists limited work in investigating intelligent interactive systems for radiology. To address this limitation, we introduce a realistic and information-rich task of Visual Dialog in radiology, specific to chest X-ray images. Using MIMIC-CXR, an openly available database of chest X-ray images, we construct both a synthetic and a real-world dataset and provide baseline scores achieved by state-of-the-art models. We show that incorporating medical history of the patient leads to better performance in answering questions as opposed to conventional visual question answering model which looks only at the image. While our experiments show promising results, they indicate that the task is extremely challenging with significant scope for improvement. We make both the datasets (synthetic and gold standard) and the associated code publicly available to the research community.","PeriodicalId":200974,"journal":{"name":"Workshop on Biomedical Natural Language Processing","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Towards Visual Dialog for Radiology\",\"authors\":\"Olga Kovaleva, Chaitanya P. Shivade, Satyananda Kashyap, Karina Kanjaria, Joy T. Wu, Deddeh Ballah, Adam Coy, A. Karargyris, Yufan Guo, D. Beymer, Anna Rumshisky, Vandana V. Mukherjee\",\"doi\":\"10.18653/v1/2020.bionlp-1.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current research in machine learning for radiology is focused mostly on images. There exists limited work in investigating intelligent interactive systems for radiology. To address this limitation, we introduce a realistic and information-rich task of Visual Dialog in radiology, specific to chest X-ray images. Using MIMIC-CXR, an openly available database of chest X-ray images, we construct both a synthetic and a real-world dataset and provide baseline scores achieved by state-of-the-art models. We show that incorporating medical history of the patient leads to better performance in answering questions as opposed to conventional visual question answering model which looks only at the image. While our experiments show promising results, they indicate that the task is extremely challenging with significant scope for improvement. We make both the datasets (synthetic and gold standard) and the associated code publicly available to the research community.\",\"PeriodicalId\":200974,\"journal\":{\"name\":\"Workshop on Biomedical Natural Language Processing\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Biomedical Natural Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2020.bionlp-1.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Biomedical Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2020.bionlp-1.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

目前放射学机器学习的研究主要集中在图像上。在研究放射学智能交互系统方面,存在着有限的工作。为了解决这一限制,我们在放射学中引入了一个现实的、信息丰富的视觉对话任务,特别是胸部x线图像。使用MIMIC-CXR(一个公开可用的胸部x射线图像数据库),我们构建了一个合成数据集和一个真实数据集,并提供了由最先进的模型实现的基线分数。我们表明,结合患者的病史导致更好的表现在回答问题,而不是传统的视觉问答模型,只看图像。虽然我们的实验显示了有希望的结果,但它们表明,这项任务极具挑战性,有很大的改进空间。我们将数据集(合成的和黄金标准的)和相关代码公开提供给研究社区。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Visual Dialog for Radiology
Current research in machine learning for radiology is focused mostly on images. There exists limited work in investigating intelligent interactive systems for radiology. To address this limitation, we introduce a realistic and information-rich task of Visual Dialog in radiology, specific to chest X-ray images. Using MIMIC-CXR, an openly available database of chest X-ray images, we construct both a synthetic and a real-world dataset and provide baseline scores achieved by state-of-the-art models. We show that incorporating medical history of the patient leads to better performance in answering questions as opposed to conventional visual question answering model which looks only at the image. While our experiments show promising results, they indicate that the task is extremely challenging with significant scope for improvement. We make both the datasets (synthetic and gold standard) and the associated code publicly available to the research community.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信