基于模拟退火的自适应烟花算法

Wenwen Ye, Jiechang Wen
{"title":"基于模拟退火的自适应烟花算法","authors":"Wenwen Ye, Jiechang Wen","doi":"10.1109/CIS.2017.00087","DOIUrl":null,"url":null,"abstract":"This paper proposes an adaptive fireworks algorithm based on simulated annealing to solve global optimization problems. It normalizes the individuals before the explosion operation and then restores them after the explosion operation. The subpopulations are produced simultaneously by the explosion operation and the mutation operation, and then a new way to produce the explosion amplitude by introducing the simulated annealing is used to adjust the explosion amplitude adaptively along with the evolution. Experimental results on eight benchmark functions with different shift values show that the proposed algorithm has higher accuracy and faster convergence rate than the other five compared algorithms.","PeriodicalId":304958,"journal":{"name":"2017 13th International Conference on Computational Intelligence and Security (CIS)","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Adaptive Fireworks Algorithm Based on Simulated Annealing\",\"authors\":\"Wenwen Ye, Jiechang Wen\",\"doi\":\"10.1109/CIS.2017.00087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an adaptive fireworks algorithm based on simulated annealing to solve global optimization problems. It normalizes the individuals before the explosion operation and then restores them after the explosion operation. The subpopulations are produced simultaneously by the explosion operation and the mutation operation, and then a new way to produce the explosion amplitude by introducing the simulated annealing is used to adjust the explosion amplitude adaptively along with the evolution. Experimental results on eight benchmark functions with different shift values show that the proposed algorithm has higher accuracy and faster convergence rate than the other five compared algorithms.\",\"PeriodicalId\":304958,\"journal\":{\"name\":\"2017 13th International Conference on Computational Intelligence and Security (CIS)\",\"volume\":\"115 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 13th International Conference on Computational Intelligence and Security (CIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIS.2017.00087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th International Conference on Computational Intelligence and Security (CIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS.2017.00087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文提出了一种基于模拟退火的自适应烟花算法来解决全局优化问题。它使爆炸前的个体正常化,爆炸后的个体恢复正常。通过爆炸操作和突变操作同时产生子种群,然后引入模拟退火来产生爆炸振幅,使爆炸振幅随演化自适应调整。在8个不同位移值的基准函数上的实验结果表明,该算法比其他5种比较算法具有更高的精度和更快的收敛速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Fireworks Algorithm Based on Simulated Annealing
This paper proposes an adaptive fireworks algorithm based on simulated annealing to solve global optimization problems. It normalizes the individuals before the explosion operation and then restores them after the explosion operation. The subpopulations are produced simultaneously by the explosion operation and the mutation operation, and then a new way to produce the explosion amplitude by introducing the simulated annealing is used to adjust the explosion amplitude adaptively along with the evolution. Experimental results on eight benchmark functions with different shift values show that the proposed algorithm has higher accuracy and faster convergence rate than the other five compared algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信