用于检测多维系统稳定性的改进神经网络

N. Mastorakis, V. Mladenov, M. Swamy
{"title":"用于检测多维系统稳定性的改进神经网络","authors":"N. Mastorakis, V. Mladenov, M. Swamy","doi":"10.1109/NEUREL.2010.5644086","DOIUrl":null,"url":null,"abstract":"In this paper, the author's previous work is extended and a new neural network is utilized to solve the stability problem of multidimensional systems. In the original authors work the problem is transformed into an optimization problem. Using the DeCarlo-Strintzis Theorem one has to check if |B(Z<inf>1</inf>,…, 1, Z<inf>m</inf>)| ≠ 0 for |Z<inf>1</inf> = … = |Z<inf>m</inf>| = 1 or equivalently if the min |B(Z<inf>1</inf>, …, 1, Z<inf>m</inf>)| is 0 or not, where B(Z<inf>1</inf>, Z<inf>2</inf>, …, Z<inf>m</inf>) is the denominator of the discrete transfer funcion. Then, the problem is reduced to a minimization problem and a neural network is proposed for solving it. To improve the chance of convergence towards the global minimum, an extension of this neural network based on random noise terms is proposed in this contribution. The numerical examples illustrate the validity and the efficiency of the new neural network.","PeriodicalId":227890,"journal":{"name":"10th Symposium on Neural Network Applications in Electrical Engineering","volume":"216 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Improved neural network for checking the stability of multidimensional systems\",\"authors\":\"N. Mastorakis, V. Mladenov, M. Swamy\",\"doi\":\"10.1109/NEUREL.2010.5644086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the author's previous work is extended and a new neural network is utilized to solve the stability problem of multidimensional systems. In the original authors work the problem is transformed into an optimization problem. Using the DeCarlo-Strintzis Theorem one has to check if |B(Z<inf>1</inf>,…, 1, Z<inf>m</inf>)| ≠ 0 for |Z<inf>1</inf> = … = |Z<inf>m</inf>| = 1 or equivalently if the min |B(Z<inf>1</inf>, …, 1, Z<inf>m</inf>)| is 0 or not, where B(Z<inf>1</inf>, Z<inf>2</inf>, …, Z<inf>m</inf>) is the denominator of the discrete transfer funcion. Then, the problem is reduced to a minimization problem and a neural network is proposed for solving it. To improve the chance of convergence towards the global minimum, an extension of this neural network based on random noise terms is proposed in this contribution. The numerical examples illustrate the validity and the efficiency of the new neural network.\",\"PeriodicalId\":227890,\"journal\":{\"name\":\"10th Symposium on Neural Network Applications in Electrical Engineering\",\"volume\":\"216 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"10th Symposium on Neural Network Applications in Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEUREL.2010.5644086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"10th Symposium on Neural Network Applications in Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEUREL.2010.5644086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在此基础上,提出了一种新的神经网络来解决多维系统的稳定性问题。在原作者的作品中,这个问题被转化为一个优化问题。使用DeCarlo-Strintzis定理,我们必须检查|B(Z1,…,1,Zm)|是否≠0,对于|Z1 =…= |Zm| = 1,或者等价地,如果最小|B(Z1,…,1,Zm)|为0,其中B(Z1, Z2,…,Zm)是离散传递函数的分母。然后,将该问题简化为最小化问题,并提出一种神经网络来求解该问题。为了提高收敛到全局最小值的机会,本文提出了基于随机噪声项的神经网络的扩展。数值算例说明了该神经网络的有效性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved neural network for checking the stability of multidimensional systems
In this paper, the author's previous work is extended and a new neural network is utilized to solve the stability problem of multidimensional systems. In the original authors work the problem is transformed into an optimization problem. Using the DeCarlo-Strintzis Theorem one has to check if |B(Z1,…, 1, Zm)| ≠ 0 for |Z1 = … = |Zm| = 1 or equivalently if the min |B(Z1, …, 1, Zm)| is 0 or not, where B(Z1, Z2, …, Zm) is the denominator of the discrete transfer funcion. Then, the problem is reduced to a minimization problem and a neural network is proposed for solving it. To improve the chance of convergence towards the global minimum, an extension of this neural network based on random noise terms is proposed in this contribution. The numerical examples illustrate the validity and the efficiency of the new neural network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信