基于自关联神经网络的k均值算法在火电厂锅炉管泄漏故障检测中的应用

Kyu han Kim, Heung-seok Lee, Juneho Park
{"title":"基于自关联神经网络的k均值算法在火电厂锅炉管泄漏故障检测中的应用","authors":"Kyu han Kim, Heung-seok Lee, Juneho Park","doi":"10.1109/ISAP48318.2019.9065940","DOIUrl":null,"url":null,"abstract":"The fault detection system using K-means algorithm based on Auto-Associative Neural Network (AANN) is proposed for boiler tube leakage in a thermal power plant. The normal operation state of the power plant is modeled using the AANN proposed by Kramer among various neural network techniques. The difference between the normal operation state estimation value which is the output of the model and the actual value of the main variables related to the fault is called residual. Using the residuals and residual variation of each variable, the fault detection system of boiler tube leakage is implemented. Finally, the actual fault cases of the boiler tube leakage are applied to verify the possibility of fault detection.","PeriodicalId":316020,"journal":{"name":"2019 20th International Conference on Intelligent System Application to Power Systems (ISAP)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Detection of Boiler Tube Leakage Fault in a Thermal Power Plant Using K-means Algorithm based on Auto-Associative Neural Network\",\"authors\":\"Kyu han Kim, Heung-seok Lee, Juneho Park\",\"doi\":\"10.1109/ISAP48318.2019.9065940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The fault detection system using K-means algorithm based on Auto-Associative Neural Network (AANN) is proposed for boiler tube leakage in a thermal power plant. The normal operation state of the power plant is modeled using the AANN proposed by Kramer among various neural network techniques. The difference between the normal operation state estimation value which is the output of the model and the actual value of the main variables related to the fault is called residual. Using the residuals and residual variation of each variable, the fault detection system of boiler tube leakage is implemented. Finally, the actual fault cases of the boiler tube leakage are applied to verify the possibility of fault detection.\",\"PeriodicalId\":316020,\"journal\":{\"name\":\"2019 20th International Conference on Intelligent System Application to Power Systems (ISAP)\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 20th International Conference on Intelligent System Application to Power Systems (ISAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISAP48318.2019.9065940\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 20th International Conference on Intelligent System Application to Power Systems (ISAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAP48318.2019.9065940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种基于自关联神经网络(AANN)的k均值算法的火电厂锅炉管泄漏故障检测系统。在各种神经网络技术中,采用Kramer提出的AANN对电厂的正常运行状态进行建模。模型输出的正常运行状态估计值与与故障相关的主要变量的实际值之间的差称为残差。利用各变量的残差和残差变化量,实现了锅炉管道泄漏故障检测系统。最后,结合锅炉管漏的实际故障案例,验证了故障检测的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detection of Boiler Tube Leakage Fault in a Thermal Power Plant Using K-means Algorithm based on Auto-Associative Neural Network
The fault detection system using K-means algorithm based on Auto-Associative Neural Network (AANN) is proposed for boiler tube leakage in a thermal power plant. The normal operation state of the power plant is modeled using the AANN proposed by Kramer among various neural network techniques. The difference between the normal operation state estimation value which is the output of the model and the actual value of the main variables related to the fault is called residual. Using the residuals and residual variation of each variable, the fault detection system of boiler tube leakage is implemented. Finally, the actual fault cases of the boiler tube leakage are applied to verify the possibility of fault detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信