基于多目标蚁群规划的二值和多类不平衡分类

J. L. Olmo, Alberto Cano, J. Romero, Sebastián Ventura
{"title":"基于多目标蚁群规划的二值和多类不平衡分类","authors":"J. L. Olmo, Alberto Cano, J. Romero, Sebastián Ventura","doi":"10.1109/ISDA.2012.6416515","DOIUrl":null,"url":null,"abstract":"Classification in imbalanced domains is a challenging task, since most of its real domain applications present skewed distributions of data. However, there are still some open issues in this kind of problem. This paper presents a multi-objective grammar-based ant programming algorithm for imbalanced classification, capable of addressing this task from both the binary and multiclass sides, unlike most of the solutions presented so far. We carry out two experimental studies comparing our algorithm against binary and multiclass solutions, demonstrating that it achieves an excellent performance for both binary and multiclass imbalanced data sets.","PeriodicalId":370150,"journal":{"name":"2012 12th International Conference on Intelligent Systems Design and Applications (ISDA)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Binary and multiclass imbalanced classification using multi-objective ant programming\",\"authors\":\"J. L. Olmo, Alberto Cano, J. Romero, Sebastián Ventura\",\"doi\":\"10.1109/ISDA.2012.6416515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classification in imbalanced domains is a challenging task, since most of its real domain applications present skewed distributions of data. However, there are still some open issues in this kind of problem. This paper presents a multi-objective grammar-based ant programming algorithm for imbalanced classification, capable of addressing this task from both the binary and multiclass sides, unlike most of the solutions presented so far. We carry out two experimental studies comparing our algorithm against binary and multiclass solutions, demonstrating that it achieves an excellent performance for both binary and multiclass imbalanced data sets.\",\"PeriodicalId\":370150,\"journal\":{\"name\":\"2012 12th International Conference on Intelligent Systems Design and Applications (ISDA)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 12th International Conference on Intelligent Systems Design and Applications (ISDA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISDA.2012.6416515\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 12th International Conference on Intelligent Systems Design and Applications (ISDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2012.6416515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

不平衡领域的分类是一项具有挑战性的任务,因为它的大多数实际领域应用都存在倾斜的数据分布。然而,在这类问题中仍有一些悬而未决的问题。本文提出了一种基于多目标语法的非平衡分类蚁群算法,与目前提出的大多数解决方案不同,它能够从二元和多类两个方面解决这一问题。我们进行了两个实验研究,将我们的算法与二进制和多类解决方案进行了比较,表明它在二进制和多类不平衡数据集上都取得了出色的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Binary and multiclass imbalanced classification using multi-objective ant programming
Classification in imbalanced domains is a challenging task, since most of its real domain applications present skewed distributions of data. However, there are still some open issues in this kind of problem. This paper presents a multi-objective grammar-based ant programming algorithm for imbalanced classification, capable of addressing this task from both the binary and multiclass sides, unlike most of the solutions presented so far. We carry out two experimental studies comparing our algorithm against binary and multiclass solutions, demonstrating that it achieves an excellent performance for both binary and multiclass imbalanced data sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信