基于无线供电认知移动边缘计算的节能资源分配

Boyang Liu, Jing Bai, Yujiao Ma, Jin Wang, G. Lu
{"title":"基于无线供电认知移动边缘计算的节能资源分配","authors":"Boyang Liu, Jing Bai, Yujiao Ma, Jin Wang, G. Lu","doi":"10.1109/ICCW.2019.8756664","DOIUrl":null,"url":null,"abstract":"In this paper, a framework for mobile edge computing (MEC) in cognitive radio (CR) networks is proposed, which integrates three technologies: MEC, cooperative relaying and wireless power transfer (WPT). The purpose of this paper is to minimize the energy cost of the WD in both partial offloading and local computing scenarios. A two-phase algorithm is proposed to solve the optimization problems. Semi-closed and closed-form solutions are derived by using Lagrangian dual decomposition and successive pseudo-convex approximation (SPCA) algorithm. Simulation results show the effects of the different parameters on the system performance and demonstrate the validity of our proposed algorithm.","PeriodicalId":426086,"journal":{"name":"2019 IEEE International Conference on Communications Workshops (ICC Workshops)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Energy-Efficient Resource Allocation for Wireless Powered Cognitive Mobile Edge Computing\",\"authors\":\"Boyang Liu, Jing Bai, Yujiao Ma, Jin Wang, G. Lu\",\"doi\":\"10.1109/ICCW.2019.8756664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a framework for mobile edge computing (MEC) in cognitive radio (CR) networks is proposed, which integrates three technologies: MEC, cooperative relaying and wireless power transfer (WPT). The purpose of this paper is to minimize the energy cost of the WD in both partial offloading and local computing scenarios. A two-phase algorithm is proposed to solve the optimization problems. Semi-closed and closed-form solutions are derived by using Lagrangian dual decomposition and successive pseudo-convex approximation (SPCA) algorithm. Simulation results show the effects of the different parameters on the system performance and demonstrate the validity of our proposed algorithm.\",\"PeriodicalId\":426086,\"journal\":{\"name\":\"2019 IEEE International Conference on Communications Workshops (ICC Workshops)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Communications Workshops (ICC Workshops)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCW.2019.8756664\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Communications Workshops (ICC Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCW.2019.8756664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种基于认知无线电(CR)网络的移动边缘计算(MEC)框架,该框架融合了MEC、协同中继和无线功率传输(WPT)三种技术。本文的目的是在局部卸载和局部计算场景下最小化WD的能源成本。提出了一种求解优化问题的两阶段算法。利用拉格朗日对偶分解和逐次伪凸逼近(SPCA)算法,导出了半闭解和闭解。仿真结果显示了不同参数对系统性能的影响,验证了算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy-Efficient Resource Allocation for Wireless Powered Cognitive Mobile Edge Computing
In this paper, a framework for mobile edge computing (MEC) in cognitive radio (CR) networks is proposed, which integrates three technologies: MEC, cooperative relaying and wireless power transfer (WPT). The purpose of this paper is to minimize the energy cost of the WD in both partial offloading and local computing scenarios. A two-phase algorithm is proposed to solve the optimization problems. Semi-closed and closed-form solutions are derived by using Lagrangian dual decomposition and successive pseudo-convex approximation (SPCA) algorithm. Simulation results show the effects of the different parameters on the system performance and demonstrate the validity of our proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信