延迟神经网络指数稳定性的进一步结果

Xiaofan Liu, Xinge Liu, Meilan Tang
{"title":"延迟神经网络指数稳定性的进一步结果","authors":"Xiaofan Liu, Xinge Liu, Meilan Tang","doi":"10.1109/FSKD.2016.7603279","DOIUrl":null,"url":null,"abstract":"This paper considers exponential stability of delayed neural networks(NNs). Based on some novel integral inequalities and a modified Lyapunov-Krasovskii functional(LKF), further result on delay-dependent exponential stability is obtained for the considered delayed neural networks in form of linear matrix inequality(LMI). The effectiveness of our result in this paper is also demonstrated by a numerical example.","PeriodicalId":373155,"journal":{"name":"2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Further results on exponential stability of delayed neural networks\",\"authors\":\"Xiaofan Liu, Xinge Liu, Meilan Tang\",\"doi\":\"10.1109/FSKD.2016.7603279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers exponential stability of delayed neural networks(NNs). Based on some novel integral inequalities and a modified Lyapunov-Krasovskii functional(LKF), further result on delay-dependent exponential stability is obtained for the considered delayed neural networks in form of linear matrix inequality(LMI). The effectiveness of our result in this paper is also demonstrated by a numerical example.\",\"PeriodicalId\":373155,\"journal\":{\"name\":\"2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FSKD.2016.7603279\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FSKD.2016.7603279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了延迟神经网络的指数稳定性问题。基于一些新的积分不等式和改进的Lyapunov-Krasovskii泛函(LKF),进一步以线性矩阵不等式(LMI)的形式得到了所考虑的延迟神经网络的时滞相关指数稳定性的结果。最后通过数值算例验证了本文结果的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Further results on exponential stability of delayed neural networks
This paper considers exponential stability of delayed neural networks(NNs). Based on some novel integral inequalities and a modified Lyapunov-Krasovskii functional(LKF), further result on delay-dependent exponential stability is obtained for the considered delayed neural networks in form of linear matrix inequality(LMI). The effectiveness of our result in this paper is also demonstrated by a numerical example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信