{"title":"煤与瓦斯突出危险性预测GA-BP神经网络优化","authors":"Bo Wu, Shiyue Wu, Xiaofeng Liu","doi":"10.1109/BICTA.2010.5645206","DOIUrl":null,"url":null,"abstract":"This paper presents a genetic algorithm and back propagation neural network (GA-BP-NN) outburst prediction model with a structure of 6 × 13 × 1 according to basic theory of coal and gas outburst hazard classification prediction of coal mine and genetic algorithm, back propagation and neural network. Particularly, we also construct an application of outburst prediction of coal mine. From the learning of living examples of an area in Shanxi province in China, we could safely draw the conclusions as followed: a proper number of learning samples is 12∼18 when there are 6 input neurons of outburst prediction; In addition, the network generalization capability could be enhanced by increasing number of classes which belong to the training samples and decreasing distances of sample intervals; When the Logsig delivery function is taken in output layer, the pattern classification of network is best and the critical value of outburst prediction criterion is 0.5; When the pattern classification of network is best, other parameters have little influence on the network capability. The application and conclusions could be taken in Prediction of Coal and Gas Outburst of coal mining and contribute greatly to production safety of coal mine.","PeriodicalId":302619,"journal":{"name":"2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Optimization on GA-BP neural network of coal and gas outburst hazard prediction\",\"authors\":\"Bo Wu, Shiyue Wu, Xiaofeng Liu\",\"doi\":\"10.1109/BICTA.2010.5645206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a genetic algorithm and back propagation neural network (GA-BP-NN) outburst prediction model with a structure of 6 × 13 × 1 according to basic theory of coal and gas outburst hazard classification prediction of coal mine and genetic algorithm, back propagation and neural network. Particularly, we also construct an application of outburst prediction of coal mine. From the learning of living examples of an area in Shanxi province in China, we could safely draw the conclusions as followed: a proper number of learning samples is 12∼18 when there are 6 input neurons of outburst prediction; In addition, the network generalization capability could be enhanced by increasing number of classes which belong to the training samples and decreasing distances of sample intervals; When the Logsig delivery function is taken in output layer, the pattern classification of network is best and the critical value of outburst prediction criterion is 0.5; When the pattern classification of network is best, other parameters have little influence on the network capability. The application and conclusions could be taken in Prediction of Coal and Gas Outburst of coal mining and contribute greatly to production safety of coal mine.\",\"PeriodicalId\":302619,\"journal\":{\"name\":\"2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)\",\"volume\":\"104 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BICTA.2010.5645206\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BICTA.2010.5645206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
摘要
根据煤矿煤与瓦斯突出危险性分类预测的基本理论,结合遗传算法、反向传播和神经网络,提出了结构为6 × 13 × 1的遗传算法- bp - nn突出预测模型。特别地,我们还构建了一个煤矿突出预测的应用。通过对中国山西某地区的实例学习,我们可以得出如下结论:当有6个爆发预测输入神经元时,学习样本的适当数量为12 ~ 18个;此外,通过增加训练样本所属类数和减小样本间隔距离可以增强网络的泛化能力;输出层采用Logsig传递函数时,网络模式分类效果最好,突出预测准则临界值为0.5;当网络的模式分类效果最好时,其他参数对网络性能的影响较小。该方法的应用和结论可用于煤矿开采煤与瓦斯突出预测,对煤矿安全生产具有重要意义。
Optimization on GA-BP neural network of coal and gas outburst hazard prediction
This paper presents a genetic algorithm and back propagation neural network (GA-BP-NN) outburst prediction model with a structure of 6 × 13 × 1 according to basic theory of coal and gas outburst hazard classification prediction of coal mine and genetic algorithm, back propagation and neural network. Particularly, we also construct an application of outburst prediction of coal mine. From the learning of living examples of an area in Shanxi province in China, we could safely draw the conclusions as followed: a proper number of learning samples is 12∼18 when there are 6 input neurons of outburst prediction; In addition, the network generalization capability could be enhanced by increasing number of classes which belong to the training samples and decreasing distances of sample intervals; When the Logsig delivery function is taken in output layer, the pattern classification of network is best and the critical value of outburst prediction criterion is 0.5; When the pattern classification of network is best, other parameters have little influence on the network capability. The application and conclusions could be taken in Prediction of Coal and Gas Outburst of coal mining and contribute greatly to production safety of coal mine.