用于ct扫描肝脏分割的三维主动形状模型

Nesrine Trabelsi, K. Aloui, D. Ben Sellem
{"title":"用于ct扫描肝脏分割的三维主动形状模型","authors":"Nesrine Trabelsi, K. Aloui, D. Ben Sellem","doi":"10.1109/DT.2017.8012093","DOIUrl":null,"url":null,"abstract":"This paper present an automatic 3D liver segmentation based on Active Shape Model. It allows us to introduce a 3D modeling feature for the target organ to lead the segmentation. This method is tested on the dataset IRCAD which containe a 20 Computed tomography exams. These exams are obtained with different scanning protocol. Thence, we used two algorithms. First, we employed the Shape Context based Corresponding Point Model with a B-spline registration to normalize the 3D dataset with the landmarks mean distance equal to 95%. Then, we applied the active shape model. The experiments demonstrate that this algorithm is efficient and it have a tolerate value of Modified Hausdorff Distance of 3D matching between surface mesh using the iso-surface reconstruction and the Active Shape Model. Its range equal to 28.95mm.","PeriodicalId":426951,"journal":{"name":"2016 7th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"3D Active Shape Model for CT-scan liver segmentation\",\"authors\":\"Nesrine Trabelsi, K. Aloui, D. Ben Sellem\",\"doi\":\"10.1109/DT.2017.8012093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper present an automatic 3D liver segmentation based on Active Shape Model. It allows us to introduce a 3D modeling feature for the target organ to lead the segmentation. This method is tested on the dataset IRCAD which containe a 20 Computed tomography exams. These exams are obtained with different scanning protocol. Thence, we used two algorithms. First, we employed the Shape Context based Corresponding Point Model with a B-spline registration to normalize the 3D dataset with the landmarks mean distance equal to 95%. Then, we applied the active shape model. The experiments demonstrate that this algorithm is efficient and it have a tolerate value of Modified Hausdorff Distance of 3D matching between surface mesh using the iso-surface reconstruction and the Active Shape Model. Its range equal to 28.95mm.\",\"PeriodicalId\":426951,\"journal\":{\"name\":\"2016 7th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 7th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DT.2017.8012093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 7th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DT.2017.8012093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种基于活动形状模型的肝脏三维自动分割方法。它允许我们为目标器官引入3D建模功能来引导分割。该方法在包含20个计算机断层扫描的数据集IRCAD上进行了测试。这些结果是用不同的扫描协议得到的。因此,我们使用了两种算法。首先,我们采用基于形状上下文的对应点模型和b样条配准对三维数据集进行归一化,使地标平均距离等于95%。然后,应用活动形状模型。实验结果表明,该算法是有效的,并且具有利用等曲面重建与主动形状模型进行曲面网格三维匹配的修正Hausdorff距离容限值。其射程为28.95毫米。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3D Active Shape Model for CT-scan liver segmentation
This paper present an automatic 3D liver segmentation based on Active Shape Model. It allows us to introduce a 3D modeling feature for the target organ to lead the segmentation. This method is tested on the dataset IRCAD which containe a 20 Computed tomography exams. These exams are obtained with different scanning protocol. Thence, we used two algorithms. First, we employed the Shape Context based Corresponding Point Model with a B-spline registration to normalize the 3D dataset with the landmarks mean distance equal to 95%. Then, we applied the active shape model. The experiments demonstrate that this algorithm is efficient and it have a tolerate value of Modified Hausdorff Distance of 3D matching between surface mesh using the iso-surface reconstruction and the Active Shape Model. Its range equal to 28.95mm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信