基于人工神经网络的汽车驾驶模拟器自适应动态表面控制

Kiem Nguyen Tien, Duyen Ha Thi Kim, T. Manh, C. Manh, Ngoc Pham Van Bach, Hiep Do Quang
{"title":"基于人工神经网络的汽车驾驶模拟器自适应动态表面控制","authors":"Kiem Nguyen Tien, Duyen Ha Thi Kim, T. Manh, C. Manh, Ngoc Pham Van Bach, Hiep Do Quang","doi":"10.1109/MoRSE48060.2019.8998749","DOIUrl":null,"url":null,"abstract":"This paper presents an adaptive controller for a four degrees of freedom car driving simulator. The actual model of the simulator is often deficient in the system's parameters or has the nonlinear uncertainties. Therefore an adaptive dynamic surface control based on radial basis function neural network is proposed to approximate the uncertain elements and ensure the stability of the system at the same time. The stability of the system is proved based on Lyapunov theorem. Simulation results verify the effectiveness and accuracy of the proposed algorithm and the comparison between using neural network and not using this element indicates the superiority of the proposed controller.","PeriodicalId":111606,"journal":{"name":"2019 International Conference on Mechatronics, Robotics and Systems Engineering (MoRSE)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Adaptive Dynamic Surface Control for Car Driving Simulator based on Artificial Neural Network\",\"authors\":\"Kiem Nguyen Tien, Duyen Ha Thi Kim, T. Manh, C. Manh, Ngoc Pham Van Bach, Hiep Do Quang\",\"doi\":\"10.1109/MoRSE48060.2019.8998749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an adaptive controller for a four degrees of freedom car driving simulator. The actual model of the simulator is often deficient in the system's parameters or has the nonlinear uncertainties. Therefore an adaptive dynamic surface control based on radial basis function neural network is proposed to approximate the uncertain elements and ensure the stability of the system at the same time. The stability of the system is proved based on Lyapunov theorem. Simulation results verify the effectiveness and accuracy of the proposed algorithm and the comparison between using neural network and not using this element indicates the superiority of the proposed controller.\",\"PeriodicalId\":111606,\"journal\":{\"name\":\"2019 International Conference on Mechatronics, Robotics and Systems Engineering (MoRSE)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Mechatronics, Robotics and Systems Engineering (MoRSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MoRSE48060.2019.8998749\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Mechatronics, Robotics and Systems Engineering (MoRSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MoRSE48060.2019.8998749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种四自由度汽车驾驶模拟器的自适应控制器。仿真器的实际模型往往缺乏系统参数或具有非线性不确定性。为此,提出了一种基于径向基函数神经网络的自适应动态面控制方法,在逼近不确定因素的同时保证系统的稳定性。利用李亚普诺夫定理证明了系统的稳定性。仿真结果验证了所提算法的有效性和准确性,使用神经网络与不使用神经网络的对比表明所提控制器的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Dynamic Surface Control for Car Driving Simulator based on Artificial Neural Network
This paper presents an adaptive controller for a four degrees of freedom car driving simulator. The actual model of the simulator is often deficient in the system's parameters or has the nonlinear uncertainties. Therefore an adaptive dynamic surface control based on radial basis function neural network is proposed to approximate the uncertain elements and ensure the stability of the system at the same time. The stability of the system is proved based on Lyapunov theorem. Simulation results verify the effectiveness and accuracy of the proposed algorithm and the comparison between using neural network and not using this element indicates the superiority of the proposed controller.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信