点云压缩的简化参考质量评估

Yipeng Liu, Qi Yang, Yi Xu
{"title":"点云压缩的简化参考质量评估","authors":"Yipeng Liu, Qi Yang, Yi Xu","doi":"10.1109/VCIP56404.2022.10008813","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a reduced reference (RR) point cloud quality assessment (PCQA) model named R-PCQA to quantify the distortions introduced by the lossy compression. Specifically, we use the attribute and geometry quantization steps of different compression methods (i.e., V-PCC, G-PCC and AVS) to infer the point cloud quality, assuming that the point clouds have no other distortions before compression. First, we analyze the compression distortion of point clouds under separate attribute compression and geometry compression to avoid their mutual masking, for which we consider 5 point clouds as references to generate a compression dataset (PCCQA) containing independent attribute compression and geometry compression samples. Then, we develop the proposed R-PCQA via fitting the relationship between the quantization steps and the perceptual quality. We evaluate the performance of R-PCQA on both the established dataset and another independent dataset. The results demonstrate that the proposed R-PCQA can exhibit reliable performance and high generalization ability.","PeriodicalId":269379,"journal":{"name":"2022 IEEE International Conference on Visual Communications and Image Processing (VCIP)","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Reduced Reference Quality Assessment for Point Cloud Compression\",\"authors\":\"Yipeng Liu, Qi Yang, Yi Xu\",\"doi\":\"10.1109/VCIP56404.2022.10008813\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a reduced reference (RR) point cloud quality assessment (PCQA) model named R-PCQA to quantify the distortions introduced by the lossy compression. Specifically, we use the attribute and geometry quantization steps of different compression methods (i.e., V-PCC, G-PCC and AVS) to infer the point cloud quality, assuming that the point clouds have no other distortions before compression. First, we analyze the compression distortion of point clouds under separate attribute compression and geometry compression to avoid their mutual masking, for which we consider 5 point clouds as references to generate a compression dataset (PCCQA) containing independent attribute compression and geometry compression samples. Then, we develop the proposed R-PCQA via fitting the relationship between the quantization steps and the perceptual quality. We evaluate the performance of R-PCQA on both the established dataset and another independent dataset. The results demonstrate that the proposed R-PCQA can exhibit reliable performance and high generalization ability.\",\"PeriodicalId\":269379,\"journal\":{\"name\":\"2022 IEEE International Conference on Visual Communications and Image Processing (VCIP)\",\"volume\":\"104 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Visual Communications and Image Processing (VCIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VCIP56404.2022.10008813\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP56404.2022.10008813","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种简化参考(RR)点云质量评估(PCQA)模型,命名为R-PCQA,用于量化有损压缩带来的失真。具体而言,我们使用不同压缩方法(即V-PCC, G-PCC和AVS)的属性和几何量化步骤来推断点云质量,假设压缩前点云没有其他扭曲。首先,我们分析了点云在独立属性压缩和几何压缩下的压缩失真,以避免它们的相互掩蔽,为此我们以5个点云为参考,生成包含独立属性压缩和几何压缩样本的压缩数据集(PCCQA)。然后,我们通过拟合量化步骤与感知质量之间的关系来开发所提出的R-PCQA。我们在已建立的数据集和另一个独立的数据集上评估了R-PCQA的性能。结果表明,所提出的R-PCQA具有可靠的性能和较高的泛化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reduced Reference Quality Assessment for Point Cloud Compression
In this paper, we propose a reduced reference (RR) point cloud quality assessment (PCQA) model named R-PCQA to quantify the distortions introduced by the lossy compression. Specifically, we use the attribute and geometry quantization steps of different compression methods (i.e., V-PCC, G-PCC and AVS) to infer the point cloud quality, assuming that the point clouds have no other distortions before compression. First, we analyze the compression distortion of point clouds under separate attribute compression and geometry compression to avoid their mutual masking, for which we consider 5 point clouds as references to generate a compression dataset (PCCQA) containing independent attribute compression and geometry compression samples. Then, we develop the proposed R-PCQA via fitting the relationship between the quantization steps and the perceptual quality. We evaluate the performance of R-PCQA on both the established dataset and another independent dataset. The results demonstrate that the proposed R-PCQA can exhibit reliable performance and high generalization ability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信