基于过渡状态聚类的手术机器人辅助任务分割

Yutaro Yamada, Jacinto Colan, Ana Davila, Y. Hasegawa
{"title":"基于过渡状态聚类的手术机器人辅助任务分割","authors":"Yutaro Yamada, Jacinto Colan, Ana Davila, Y. Hasegawa","doi":"10.1109/ICCRE57112.2023.10155581","DOIUrl":null,"url":null,"abstract":"Understanding surgical tasks represents an important challenge for autonomy in surgical robotic systems. To achieve this, we propose an online task segmentation framework that uses hierarchical transition state clustering to activate predefined robot assistance. Our approach involves performing a first clustering on visual features and a subsequent clustering on robot kinematic features for each visual cluster. This enables to capture relevant task transition information on each modality independently. The approach is implemented for a pick-and-place task commonly found in surgical training. The validation of the transition segmentation showed high accuracy and fast computation time. We have integrated the transition recognition module with predefined robot-assisted tool positioning. The complete framework has shown benefits in reducing task completion time and cognitive workload.","PeriodicalId":285164,"journal":{"name":"2023 8th International Conference on Control and Robotics Engineering (ICCRE)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Task Segmentation Based on Transition State Clustering for Surgical Robot Assistance\",\"authors\":\"Yutaro Yamada, Jacinto Colan, Ana Davila, Y. Hasegawa\",\"doi\":\"10.1109/ICCRE57112.2023.10155581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding surgical tasks represents an important challenge for autonomy in surgical robotic systems. To achieve this, we propose an online task segmentation framework that uses hierarchical transition state clustering to activate predefined robot assistance. Our approach involves performing a first clustering on visual features and a subsequent clustering on robot kinematic features for each visual cluster. This enables to capture relevant task transition information on each modality independently. The approach is implemented for a pick-and-place task commonly found in surgical training. The validation of the transition segmentation showed high accuracy and fast computation time. We have integrated the transition recognition module with predefined robot-assisted tool positioning. The complete framework has shown benefits in reducing task completion time and cognitive workload.\",\"PeriodicalId\":285164,\"journal\":{\"name\":\"2023 8th International Conference on Control and Robotics Engineering (ICCRE)\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 8th International Conference on Control and Robotics Engineering (ICCRE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCRE57112.2023.10155581\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 8th International Conference on Control and Robotics Engineering (ICCRE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCRE57112.2023.10155581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

理解手术任务是手术机器人系统自主性的一个重要挑战。为了实现这一点,我们提出了一个在线任务分割框架,该框架使用分层过渡状态聚类来激活预定义的机器人辅助。我们的方法包括对视觉特征进行第一次聚类,然后对每个视觉聚类的机器人运动学特征进行后续聚类。这样就可以独立地捕获每个模态上的相关任务转换信息。该方法用于外科训练中常见的拾取和放置任务。结果表明,过渡分割的精度高,计算速度快。我们将过渡识别模块与预定义的机器人辅助工具定位集成在一起。完整的框架在减少任务完成时间和认知工作量方面显示出益处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Task Segmentation Based on Transition State Clustering for Surgical Robot Assistance
Understanding surgical tasks represents an important challenge for autonomy in surgical robotic systems. To achieve this, we propose an online task segmentation framework that uses hierarchical transition state clustering to activate predefined robot assistance. Our approach involves performing a first clustering on visual features and a subsequent clustering on robot kinematic features for each visual cluster. This enables to capture relevant task transition information on each modality independently. The approach is implemented for a pick-and-place task commonly found in surgical training. The validation of the transition segmentation showed high accuracy and fast computation time. We have integrated the transition recognition module with predefined robot-assisted tool positioning. The complete framework has shown benefits in reducing task completion time and cognitive workload.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信