基于知识驱动的多层次ICA和Motif分析的生物标志物鉴定

Li Chen, J. Xuan, Chen Wang, Y. Wang, I. Shih, Tian-Li Wang, Zhen Zhang, R. Clarke, E. Hoffman
{"title":"基于知识驱动的多层次ICA和Motif分析的生物标志物鉴定","authors":"Li Chen, J. Xuan, Chen Wang, Y. Wang, I. Shih, Tian-Li Wang, Zhen Zhang, R. Clarke, E. Hoffman","doi":"10.1109/ICMLA.2007.58","DOIUrl":null,"url":null,"abstract":"Many statistical methods often fail to identify biologically meaningful biomarkers related to a specific disease under study from expression data alone. In this paper, we develop a novel strategy, namely knowledge-driven multi-level independent component analysis (ICA), to infer regulatory signals and identify biologically relevant biomarkers from microarray data. Specifically, based on multi-level clustering results and partial prior knowledge, we apply ICA to find stable disease specific linear regulatory modes and then extract associated biomarker genes. A statistical test is designed to evaluate the significance of transcription factor enrichment for extracted gene set based on motif information. The experimental results on an Rsf-1 induced microarray data set show that our knowledge-driven method can extract more biologically meaningful biomarkers with significant enrichment of transcription factors related to ovarian cancer compared to other gene selection methods with/without prior knowledge.","PeriodicalId":448863,"journal":{"name":"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Biomarker Identification by Knowledge-Driven Multi-Level ICA and Motif Analysis\",\"authors\":\"Li Chen, J. Xuan, Chen Wang, Y. Wang, I. Shih, Tian-Li Wang, Zhen Zhang, R. Clarke, E. Hoffman\",\"doi\":\"10.1109/ICMLA.2007.58\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many statistical methods often fail to identify biologically meaningful biomarkers related to a specific disease under study from expression data alone. In this paper, we develop a novel strategy, namely knowledge-driven multi-level independent component analysis (ICA), to infer regulatory signals and identify biologically relevant biomarkers from microarray data. Specifically, based on multi-level clustering results and partial prior knowledge, we apply ICA to find stable disease specific linear regulatory modes and then extract associated biomarker genes. A statistical test is designed to evaluate the significance of transcription factor enrichment for extracted gene set based on motif information. The experimental results on an Rsf-1 induced microarray data set show that our knowledge-driven method can extract more biologically meaningful biomarkers with significant enrichment of transcription factors related to ovarian cancer compared to other gene selection methods with/without prior knowledge.\",\"PeriodicalId\":448863,\"journal\":{\"name\":\"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2007.58\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2007.58","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

许多统计方法往往不能从单独的表达数据中识别与特定疾病相关的具有生物学意义的生物标志物。在本文中,我们开发了一种新的策略,即知识驱动的多层次独立成分分析(ICA),以推断调控信号并从微阵列数据中识别生物学相关的生物标志物。具体而言,我们基于多级聚类结果和部分先验知识,利用ICA找到稳定的疾病特异性线性调控模式,然后提取相关的生物标志物基因。基于基序信息,设计了一个统计检验来评估转录因子富集对提取基因集的意义。在Rsf-1诱导的微阵列数据集上的实验结果表明,与其他有或没有先验知识的基因选择方法相比,我们的知识驱动方法可以提取更多具有生物学意义的生物标志物,这些生物标志物显著富集与卵巢癌相关的转录因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biomarker Identification by Knowledge-Driven Multi-Level ICA and Motif Analysis
Many statistical methods often fail to identify biologically meaningful biomarkers related to a specific disease under study from expression data alone. In this paper, we develop a novel strategy, namely knowledge-driven multi-level independent component analysis (ICA), to infer regulatory signals and identify biologically relevant biomarkers from microarray data. Specifically, based on multi-level clustering results and partial prior knowledge, we apply ICA to find stable disease specific linear regulatory modes and then extract associated biomarker genes. A statistical test is designed to evaluate the significance of transcription factor enrichment for extracted gene set based on motif information. The experimental results on an Rsf-1 induced microarray data set show that our knowledge-driven method can extract more biologically meaningful biomarkers with significant enrichment of transcription factors related to ovarian cancer compared to other gene selection methods with/without prior knowledge.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信