加权曼哈顿距离分类器;阿尔茨海默病诊断的SELDI数据

Oriehi Edisemi Destiny Anyaiwe, Gautam B. Singh, G. Wilson, T. Geddes
{"title":"加权曼哈顿距离分类器;阿尔茨海默病诊断的SELDI数据","authors":"Oriehi Edisemi Destiny Anyaiwe, Gautam B. Singh, G. Wilson, T. Geddes","doi":"10.1109/CEC.2017.7969321","DOIUrl":null,"url":null,"abstract":"Mass Spectrometry (Surface Enhanced Laser Desorption Time of Flight (SELDI-TOF) assay technique) for proteomics is based on the consistency and reproducibility of protein/peptide expressions. In this study, we opine that mining collections of mass spectra data instead of detailed study of individual ions generated in the course of Mass Spectrometer assay process, will generate discriminative factors for the diagnosis of Alzheimer's Disease (and other diseases in general). This model; Weighted Manhattan Distance Classifier (WMDC), classifies a test vector to the stage label of the most significant train vector to it using Manhattan Distance function and thereafter, classifies a test data point (a collection of test vectors) to the disease stage having the majority of most significant train vectors in it. The disease severity is categorized as normal/control, mild and acute impaired stages, each of which contained 20 SELDI-TOF analysis results. In all, the database contained 60 assay results of saliva analytes or protein source samples under 3 proteinChips; CM10, IMAC30 and Q10. Each laboratory experiment was performed with either low (1800 nJ) or high (4000 nJ) laser energy bombardment level. 90% classification result was obtained with a probability of 0.075 for committing type II error (that is, a test power of 0.925).","PeriodicalId":335123,"journal":{"name":"2017 IEEE Congress on Evolutionary Computation (CEC)","volume":"08 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Weighted Manhattan Distance Classifier; SELDI data for Alzheimer's disease diagnosis\",\"authors\":\"Oriehi Edisemi Destiny Anyaiwe, Gautam B. Singh, G. Wilson, T. Geddes\",\"doi\":\"10.1109/CEC.2017.7969321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mass Spectrometry (Surface Enhanced Laser Desorption Time of Flight (SELDI-TOF) assay technique) for proteomics is based on the consistency and reproducibility of protein/peptide expressions. In this study, we opine that mining collections of mass spectra data instead of detailed study of individual ions generated in the course of Mass Spectrometer assay process, will generate discriminative factors for the diagnosis of Alzheimer's Disease (and other diseases in general). This model; Weighted Manhattan Distance Classifier (WMDC), classifies a test vector to the stage label of the most significant train vector to it using Manhattan Distance function and thereafter, classifies a test data point (a collection of test vectors) to the disease stage having the majority of most significant train vectors in it. The disease severity is categorized as normal/control, mild and acute impaired stages, each of which contained 20 SELDI-TOF analysis results. In all, the database contained 60 assay results of saliva analytes or protein source samples under 3 proteinChips; CM10, IMAC30 and Q10. Each laboratory experiment was performed with either low (1800 nJ) or high (4000 nJ) laser energy bombardment level. 90% classification result was obtained with a probability of 0.075 for committing type II error (that is, a test power of 0.925).\",\"PeriodicalId\":335123,\"journal\":{\"name\":\"2017 IEEE Congress on Evolutionary Computation (CEC)\",\"volume\":\"08 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Congress on Evolutionary Computation (CEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2017.7969321\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2017.7969321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

蛋白质组学的质谱(表面增强激光飞行时间(SELDI-TOF)测定技术)是基于蛋白质/肽表达的一致性和可重复性。在本研究中,我们认为挖掘质谱数据的集合,而不是对质谱仪分析过程中产生的单个离子的详细研究,将为阿尔茨海默病(以及其他一般疾病)的诊断产生判别因素。这个模型;加权曼哈顿距离分类器(加权曼哈顿距离分类器,WMDC)使用曼哈顿距离函数将测试向量分类为对其最重要的列车向量的阶段标签,然后将测试数据点(测试向量集合)分类为具有大多数最重要列车向量的疾病阶段。疾病严重程度分为正常/对照、轻度和急性受损阶段,每个阶段包含20个SELDI-TOF分析结果。在3个proteinChips下,该数据库总共包含60个唾液分析或蛋白质源样品的检测结果;CM10, IMAC30和Q10。每个实验室实验在低(1800 nJ)或高(4000 nJ)激光能量轰击水平下进行。获得90%的分类结果,出现第二类错误的概率为0.075(即检验幂为0.925)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weighted Manhattan Distance Classifier; SELDI data for Alzheimer's disease diagnosis
Mass Spectrometry (Surface Enhanced Laser Desorption Time of Flight (SELDI-TOF) assay technique) for proteomics is based on the consistency and reproducibility of protein/peptide expressions. In this study, we opine that mining collections of mass spectra data instead of detailed study of individual ions generated in the course of Mass Spectrometer assay process, will generate discriminative factors for the diagnosis of Alzheimer's Disease (and other diseases in general). This model; Weighted Manhattan Distance Classifier (WMDC), classifies a test vector to the stage label of the most significant train vector to it using Manhattan Distance function and thereafter, classifies a test data point (a collection of test vectors) to the disease stage having the majority of most significant train vectors in it. The disease severity is categorized as normal/control, mild and acute impaired stages, each of which contained 20 SELDI-TOF analysis results. In all, the database contained 60 assay results of saliva analytes or protein source samples under 3 proteinChips; CM10, IMAC30 and Q10. Each laboratory experiment was performed with either low (1800 nJ) or high (4000 nJ) laser energy bombardment level. 90% classification result was obtained with a probability of 0.075 for committing type II error (that is, a test power of 0.925).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信