K. Fujimoto, Y. Watanabe, Bastien Chevarier, J. Otani, Jun-ichi Hironaka
{"title":"土工格栅刚度各向异性对桩-土工格栅组合方法荷载传递机制的影响","authors":"K. Fujimoto, Y. Watanabe, Bastien Chevarier, J. Otani, Jun-ichi Hironaka","doi":"10.5030/JCIGSJOURNAL.25.65","DOIUrl":null,"url":null,"abstract":"The construction of embankment on soft ground often causes the differential settlement. A deep mixing method of soil stabilization and earth reinforcement technology using geogrid are used in order to reduce this settlement. It is usually considered that embankment load can be transferred with arching effect and membrane effect of geogrid. However, only the geogrid tensile stiffness in one direction of it orientation is considered for present design. The geogrid is a multidimensional structure and it is considered that a membrane effect is on not only one direction but also two or other direction depending on its orientation. The objective of this paper is to investigate the effect of anisotropy of geogrid stiffness on load transfer mechanism of pile-geogrid combined method using Discrete Element Method (DEM). As a conclusion, the load transfer mechanism depending on the geogrid orientation was clearly observed.","PeriodicalId":165094,"journal":{"name":"Jioshinsetikkusu Rombunshu (geosynthetics Engineering Journal)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EFFECT OF ANISOTROPY OF GEOGRID STIFFNESS ON LOAD TRANSFER MECHANISM OF PILE-GEOGRID COMBINED METHODS\",\"authors\":\"K. Fujimoto, Y. Watanabe, Bastien Chevarier, J. Otani, Jun-ichi Hironaka\",\"doi\":\"10.5030/JCIGSJOURNAL.25.65\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The construction of embankment on soft ground often causes the differential settlement. A deep mixing method of soil stabilization and earth reinforcement technology using geogrid are used in order to reduce this settlement. It is usually considered that embankment load can be transferred with arching effect and membrane effect of geogrid. However, only the geogrid tensile stiffness in one direction of it orientation is considered for present design. The geogrid is a multidimensional structure and it is considered that a membrane effect is on not only one direction but also two or other direction depending on its orientation. The objective of this paper is to investigate the effect of anisotropy of geogrid stiffness on load transfer mechanism of pile-geogrid combined method using Discrete Element Method (DEM). As a conclusion, the load transfer mechanism depending on the geogrid orientation was clearly observed.\",\"PeriodicalId\":165094,\"journal\":{\"name\":\"Jioshinsetikkusu Rombunshu (geosynthetics Engineering Journal)\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jioshinsetikkusu Rombunshu (geosynthetics Engineering Journal)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5030/JCIGSJOURNAL.25.65\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jioshinsetikkusu Rombunshu (geosynthetics Engineering Journal)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5030/JCIGSJOURNAL.25.65","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
EFFECT OF ANISOTROPY OF GEOGRID STIFFNESS ON LOAD TRANSFER MECHANISM OF PILE-GEOGRID COMBINED METHODS
The construction of embankment on soft ground often causes the differential settlement. A deep mixing method of soil stabilization and earth reinforcement technology using geogrid are used in order to reduce this settlement. It is usually considered that embankment load can be transferred with arching effect and membrane effect of geogrid. However, only the geogrid tensile stiffness in one direction of it orientation is considered for present design. The geogrid is a multidimensional structure and it is considered that a membrane effect is on not only one direction but also two or other direction depending on its orientation. The objective of this paper is to investigate the effect of anisotropy of geogrid stiffness on load transfer mechanism of pile-geogrid combined method using Discrete Element Method (DEM). As a conclusion, the load transfer mechanism depending on the geogrid orientation was clearly observed.