{"title":"6pq阶和7pq阶的Cayley图是哈密顿图","authors":"Farzad Maghsoudi","doi":"10.26493/2590-9770.1389.fa2","DOIUrl":null,"url":null,"abstract":"Assume G is a finite group, such that |G| = 6pq or 7pq, where p and q are distinct prime numbers, and let S be a generating set of G. We prove there is a Hamiltonian cycle in the corresponding Cayley graph Cay(G;S).","PeriodicalId":236892,"journal":{"name":"Art Discret. Appl. Math.","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Cayley graphs of order 6pq and 7pq are Hamiltonian\",\"authors\":\"Farzad Maghsoudi\",\"doi\":\"10.26493/2590-9770.1389.fa2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Assume G is a finite group, such that |G| = 6pq or 7pq, where p and q are distinct prime numbers, and let S be a generating set of G. We prove there is a Hamiltonian cycle in the corresponding Cayley graph Cay(G;S).\",\"PeriodicalId\":236892,\"journal\":{\"name\":\"Art Discret. Appl. Math.\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Art Discret. Appl. Math.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26493/2590-9770.1389.fa2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Art Discret. Appl. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26493/2590-9770.1389.fa2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cayley graphs of order 6pq and 7pq are Hamiltonian
Assume G is a finite group, such that |G| = 6pq or 7pq, where p and q are distinct prime numbers, and let S be a generating set of G. We prove there is a Hamiltonian cycle in the corresponding Cayley graph Cay(G;S).