基于多源信息融合的电抗器一次回路系统故障诊断方法研究

Jie Ma, Zhuang Han, Qiao Peng
{"title":"基于多源信息融合的电抗器一次回路系统故障诊断方法研究","authors":"Jie Ma, Zhuang Han, Qiao Peng","doi":"10.1145/3569966.3570079","DOIUrl":null,"url":null,"abstract":"Reactor primary circuit system is a complex dynamic system, variable parameter coupling, operation safety problems are prominent. In order to reduce the risk, a multi-source information fusion diagnosis system based on signed directed graph (SDG) and particle swarm optimization BP neural network (PSO-BP) is proposed. Utilizing D-S evidence theory for neural network diagnostic information fusion, logic inference combining SDG model, to determine potential failure. Simulation test shows that the intelligent diagnosis model could estimate the faults effectively, and provides the fault alarm transmission path.","PeriodicalId":145580,"journal":{"name":"Proceedings of the 5th International Conference on Computer Science and Software Engineering","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Fault Diagnosis Method for Reactor Primary Circuit System Based on multi-source information fusion\",\"authors\":\"Jie Ma, Zhuang Han, Qiao Peng\",\"doi\":\"10.1145/3569966.3570079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reactor primary circuit system is a complex dynamic system, variable parameter coupling, operation safety problems are prominent. In order to reduce the risk, a multi-source information fusion diagnosis system based on signed directed graph (SDG) and particle swarm optimization BP neural network (PSO-BP) is proposed. Utilizing D-S evidence theory for neural network diagnostic information fusion, logic inference combining SDG model, to determine potential failure. Simulation test shows that the intelligent diagnosis model could estimate the faults effectively, and provides the fault alarm transmission path.\",\"PeriodicalId\":145580,\"journal\":{\"name\":\"Proceedings of the 5th International Conference on Computer Science and Software Engineering\",\"volume\":\"103 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 5th International Conference on Computer Science and Software Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3569966.3570079\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th International Conference on Computer Science and Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3569966.3570079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电抗器一次回路系统是一个复杂的动态系统,多参数耦合,运行安全问题突出。为了降低风险,提出了一种基于签名有向图(SDG)和粒子群优化BP神经网络(PSO-BP)的多源信息融合诊断系统。利用D-S证据理论进行神经网络诊断信息融合,逻辑推理结合SDG模型,确定潜在故障。仿真试验表明,该智能诊断模型能够有效地估计故障,并提供故障报警传输路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on Fault Diagnosis Method for Reactor Primary Circuit System Based on multi-source information fusion
Reactor primary circuit system is a complex dynamic system, variable parameter coupling, operation safety problems are prominent. In order to reduce the risk, a multi-source information fusion diagnosis system based on signed directed graph (SDG) and particle swarm optimization BP neural network (PSO-BP) is proposed. Utilizing D-S evidence theory for neural network diagnostic information fusion, logic inference combining SDG model, to determine potential failure. Simulation test shows that the intelligent diagnosis model could estimate the faults effectively, and provides the fault alarm transmission path.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信