基于迁移学习和经典CNN模型的COVID-19防护口罩佩戴检测

Yingzhu Han, Chuyi Dai, Ding Liu
{"title":"基于迁移学习和经典CNN模型的COVID-19防护口罩佩戴检测","authors":"Yingzhu Han, Chuyi Dai, Ding Liu","doi":"10.1109/ICNSC55942.2022.10004063","DOIUrl":null,"url":null,"abstract":"In 2020, COVID-19 swept the world. To prevent the spread of the outbreak, it is crucial to ensure that everyone wears a mask during daily travel and in public places. However, relying on human inspection alone is inevitably negligent and there is a potential risk of cross-contamination between people. Automated detection by means of cameras and artificial intelligence becomes a technical solution. By training convolutional neural networks, image recognition can be implemented and image classification can be performed as a solution to the target mask-wearing detection problem. To this end, in this thesis, three typical convolutional neural network architectures, VGG-16, Inception V3, and DenseNet-121, are used as models based on deep learning to investigate the mask-wearing detection problem by using transfer learning ideas. By building six different models and comparing the performance of different typical network architectures on the same dataset using two transfer learning methods, feature extraction and fine-tuning, we can conclude that DenseNet-121 is the typical architecture with the best performance among the three networks, and fine-tuning has better transfer ability than feature extraction in solving the target mask wearing detection problem.","PeriodicalId":230499,"journal":{"name":"2022 IEEE International Conference on Networking, Sensing and Control (ICNSC)","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Detection of Face Mask Wearing for COVID-19 Protection based on Transfer Learning and Classic CNN Model\",\"authors\":\"Yingzhu Han, Chuyi Dai, Ding Liu\",\"doi\":\"10.1109/ICNSC55942.2022.10004063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 2020, COVID-19 swept the world. To prevent the spread of the outbreak, it is crucial to ensure that everyone wears a mask during daily travel and in public places. However, relying on human inspection alone is inevitably negligent and there is a potential risk of cross-contamination between people. Automated detection by means of cameras and artificial intelligence becomes a technical solution. By training convolutional neural networks, image recognition can be implemented and image classification can be performed as a solution to the target mask-wearing detection problem. To this end, in this thesis, three typical convolutional neural network architectures, VGG-16, Inception V3, and DenseNet-121, are used as models based on deep learning to investigate the mask-wearing detection problem by using transfer learning ideas. By building six different models and comparing the performance of different typical network architectures on the same dataset using two transfer learning methods, feature extraction and fine-tuning, we can conclude that DenseNet-121 is the typical architecture with the best performance among the three networks, and fine-tuning has better transfer ability than feature extraction in solving the target mask wearing detection problem.\",\"PeriodicalId\":230499,\"journal\":{\"name\":\"2022 IEEE International Conference on Networking, Sensing and Control (ICNSC)\",\"volume\":\"93 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Networking, Sensing and Control (ICNSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNSC55942.2022.10004063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Networking, Sensing and Control (ICNSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNSC55942.2022.10004063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

2020年,新冠肺炎席卷全球。为防止疫情传播,确保每个人在日常旅行和公共场所佩戴口罩至关重要。然而,仅仅依靠人工检查是不可避免的疏忽,并且存在人与人之间交叉污染的潜在风险。通过摄像头和人工智能进行自动检测成为一种技术解决方案。通过训练卷积神经网络,可以实现图像识别和图像分类,解决目标戴面具检测问题。通过构建6个不同的模型,并使用特征提取和微调两种迁移学习方法在同一数据集上比较不同典型网络架构的性能,我们可以得出DenseNet-121是三种网络中性能最好的典型架构,并且在解决目标面罩磨损检测问题时,微调比特征提取具有更好的迁移能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detection of Face Mask Wearing for COVID-19 Protection based on Transfer Learning and Classic CNN Model
In 2020, COVID-19 swept the world. To prevent the spread of the outbreak, it is crucial to ensure that everyone wears a mask during daily travel and in public places. However, relying on human inspection alone is inevitably negligent and there is a potential risk of cross-contamination between people. Automated detection by means of cameras and artificial intelligence becomes a technical solution. By training convolutional neural networks, image recognition can be implemented and image classification can be performed as a solution to the target mask-wearing detection problem. To this end, in this thesis, three typical convolutional neural network architectures, VGG-16, Inception V3, and DenseNet-121, are used as models based on deep learning to investigate the mask-wearing detection problem by using transfer learning ideas. By building six different models and comparing the performance of different typical network architectures on the same dataset using two transfer learning methods, feature extraction and fine-tuning, we can conclude that DenseNet-121 is the typical architecture with the best performance among the three networks, and fine-tuning has better transfer ability than feature extraction in solving the target mask wearing detection problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信