约束最小化的遗传算法

M. Tang, K. Eshraghian, H. Cheung
{"title":"约束最小化的遗传算法","authors":"M. Tang, K. Eshraghian, H. Cheung","doi":"10.1109/ICONIP.1999.845634","DOIUrl":null,"url":null,"abstract":"Constrained via minimization is a typical optimization problem in very large scale integrated circuit (VLSI) routing. It is used to minimize the number of vias introduced in a VLSI routing. The first genetic algorithm for the constrained via minimization problem is proposed. Experimental results show that the developed genetic algorithm can consistently produce the same or better results than the best deterministic constrained via minimization algorithms.","PeriodicalId":237855,"journal":{"name":"ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A genetic algorithm for constrained via minimization\",\"authors\":\"M. Tang, K. Eshraghian, H. Cheung\",\"doi\":\"10.1109/ICONIP.1999.845634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Constrained via minimization is a typical optimization problem in very large scale integrated circuit (VLSI) routing. It is used to minimize the number of vias introduced in a VLSI routing. The first genetic algorithm for the constrained via minimization problem is proposed. Experimental results show that the developed genetic algorithm can consistently produce the same or better results than the best deterministic constrained via minimization algorithms.\",\"PeriodicalId\":237855,\"journal\":{\"name\":\"ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICONIP.1999.845634\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONIP.1999.845634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

最小化约束是超大规模集成电路(VLSI)布线中典型的优化问题。它用于最小化VLSI路由中引入的过孔数量。提出了约束最小化问题的第一个遗传算法。实验结果表明,所提出的遗传算法与基于最优确定性约束的最小化算法相比,能够得到相同甚至更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A genetic algorithm for constrained via minimization
Constrained via minimization is a typical optimization problem in very large scale integrated circuit (VLSI) routing. It is used to minimize the number of vias introduced in a VLSI routing. The first genetic algorithm for the constrained via minimization problem is proposed. Experimental results show that the developed genetic algorithm can consistently produce the same or better results than the best deterministic constrained via minimization algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信