有界度图中顶点覆盖与独立集的不可逼近性

Per Austrin, Subhash Khot, S. Safra
{"title":"有界度图中顶点覆盖与独立集的不可逼近性","authors":"Per Austrin, Subhash Khot, S. Safra","doi":"10.4086/toc.2011.v007a003","DOIUrl":null,"url":null,"abstract":"We study the inapproximability of Vertex Cover and Independent Set on degree $d$ graphs. We prove that: \\begin{itemize} \\item Vertex Cover is Unique Games-hard to approximate to within a factor $2 - (2+o_d(1)) \\frac{ \\log\\log d}{ \\log d}$. This exactly matches the algorithmic result of Halperin \\cite{halperin02improved} up to the $o_d(1)$ term. \\item Independent Set is Unique Games-hard to approximate to within a factor $O(\\frac{d}{\\log^2 d})$. This improves the $\\frac{d}{\\log^{O(1)}(d)}$ Unique Games hardness result of Samorodnitsky and Trevisan \\cite{samorodnitsky06gowers}. Additionally, our result does not rely on the construction of a query efficient PCP as in \\cite{samorodnitsky06gowers}. \\end{itemize}","PeriodicalId":158572,"journal":{"name":"2009 24th Annual IEEE Conference on Computational Complexity","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"120","resultStr":"{\"title\":\"Inapproximability of Vertex Cover and Independent Set in Bounded Degree Graphs\",\"authors\":\"Per Austrin, Subhash Khot, S. Safra\",\"doi\":\"10.4086/toc.2011.v007a003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the inapproximability of Vertex Cover and Independent Set on degree $d$ graphs. We prove that: \\\\begin{itemize} \\\\item Vertex Cover is Unique Games-hard to approximate to within a factor $2 - (2+o_d(1)) \\\\frac{ \\\\log\\\\log d}{ \\\\log d}$. This exactly matches the algorithmic result of Halperin \\\\cite{halperin02improved} up to the $o_d(1)$ term. \\\\item Independent Set is Unique Games-hard to approximate to within a factor $O(\\\\frac{d}{\\\\log^2 d})$. This improves the $\\\\frac{d}{\\\\log^{O(1)}(d)}$ Unique Games hardness result of Samorodnitsky and Trevisan \\\\cite{samorodnitsky06gowers}. Additionally, our result does not rely on the construction of a query efficient PCP as in \\\\cite{samorodnitsky06gowers}. \\\\end{itemize}\",\"PeriodicalId\":158572,\"journal\":{\"name\":\"2009 24th Annual IEEE Conference on Computational Complexity\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"120\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 24th Annual IEEE Conference on Computational Complexity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4086/toc.2011.v007a003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 24th Annual IEEE Conference on Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4086/toc.2011.v007a003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 120

摘要

研究了$d$度图上顶点覆盖和独立集的不可逼近性。我们证明: \begin{itemize} \item 顶点覆盖是一种独特的游戏——很难在一个因子内近似$2 - (2+o_d(1)) \frac{ \log\log d}{ \log d}$。这与Halperin \cite{halperin02improved}到$o_d(1)$项的算法结果完全匹配。 \item 独立集是独特的游戏—-很难在一个因子内近似$O(\frac{d}{\log^2 d})$。这提高了$\frac{d}{\log^{O(1)}(d)}$独特的游戏硬度结果Samorodnitsky和Trevisan \cite{samorodnitsky06gowers}。此外,我们的结果不像\cite{samorodnitsky06gowers}那样依赖于查询高效PCP的构造。 \end{itemize}
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inapproximability of Vertex Cover and Independent Set in Bounded Degree Graphs
We study the inapproximability of Vertex Cover and Independent Set on degree $d$ graphs. We prove that: \begin{itemize} \item Vertex Cover is Unique Games-hard to approximate to within a factor $2 - (2+o_d(1)) \frac{ \log\log d}{ \log d}$. This exactly matches the algorithmic result of Halperin \cite{halperin02improved} up to the $o_d(1)$ term. \item Independent Set is Unique Games-hard to approximate to within a factor $O(\frac{d}{\log^2 d})$. This improves the $\frac{d}{\log^{O(1)}(d)}$ Unique Games hardness result of Samorodnitsky and Trevisan \cite{samorodnitsky06gowers}. Additionally, our result does not rely on the construction of a query efficient PCP as in \cite{samorodnitsky06gowers}. \end{itemize}
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信