Jack Holligan, E. Bennett, D. Hong, Jong-Wan Lee, C. Lin, B. Lucini, M. Piai, Davide Vadacchino
{"title":"Sp(2N) Yang-Mills趋向大N。","authors":"Jack Holligan, E. Bennett, D. Hong, Jong-Wan Lee, C. Lin, B. Lucini, M. Piai, Davide Vadacchino","doi":"10.22323/1.363.0177","DOIUrl":null,"url":null,"abstract":"Non-perturbative aspects of the physics of $Sp(2N)$ gauge theories are interesting for phenomenological and theoretical reasons, and little studied so far, particularly in the approach to the large-$N$ limit. We examine the spectrum of glueballs and the string tension of Yang-Mills theories based upon these groups. Glueball masses are calculated numerically with a variational method from Monte-Carlo generated lattice gauge configurations. After taking continuum limits for $N$ = 1, 2, 3 and 4, we extrapolate the results towards large $N$. We compare the resulting spectrum with that of $SU(N)$ gauge theories, both at finite $N$ and as $N$ approaches infinity.","PeriodicalId":147987,"journal":{"name":"Proceedings of 37th International Symposium on Lattice Field Theory — PoS(LATTICE2019)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Sp(2N) Yang-Mills towards large N.\",\"authors\":\"Jack Holligan, E. Bennett, D. Hong, Jong-Wan Lee, C. Lin, B. Lucini, M. Piai, Davide Vadacchino\",\"doi\":\"10.22323/1.363.0177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Non-perturbative aspects of the physics of $Sp(2N)$ gauge theories are interesting for phenomenological and theoretical reasons, and little studied so far, particularly in the approach to the large-$N$ limit. We examine the spectrum of glueballs and the string tension of Yang-Mills theories based upon these groups. Glueball masses are calculated numerically with a variational method from Monte-Carlo generated lattice gauge configurations. After taking continuum limits for $N$ = 1, 2, 3 and 4, we extrapolate the results towards large $N$. We compare the resulting spectrum with that of $SU(N)$ gauge theories, both at finite $N$ and as $N$ approaches infinity.\",\"PeriodicalId\":147987,\"journal\":{\"name\":\"Proceedings of 37th International Symposium on Lattice Field Theory — PoS(LATTICE2019)\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 37th International Symposium on Lattice Field Theory — PoS(LATTICE2019)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22323/1.363.0177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 37th International Symposium on Lattice Field Theory — PoS(LATTICE2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.363.0177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Non-perturbative aspects of the physics of $Sp(2N)$ gauge theories are interesting for phenomenological and theoretical reasons, and little studied so far, particularly in the approach to the large-$N$ limit. We examine the spectrum of glueballs and the string tension of Yang-Mills theories based upon these groups. Glueball masses are calculated numerically with a variational method from Monte-Carlo generated lattice gauge configurations. After taking continuum limits for $N$ = 1, 2, 3 and 4, we extrapolate the results towards large $N$. We compare the resulting spectrum with that of $SU(N)$ gauge theories, both at finite $N$ and as $N$ approaches infinity.