离散大型切换系统的分散镇定

D. Jabri, N. Manamanni, K. Guelton, M. Abdelkrim
{"title":"离散大型切换系统的分散镇定","authors":"D. Jabri, N. Manamanni, K. Guelton, M. Abdelkrim","doi":"10.1109/MED.2010.5547882","DOIUrl":null,"url":null,"abstract":"Stabilization issue for discrete-time interconnected switched system is studied in this paper. A global large scale discrete-time system can be decomposed into a set of small interconnected switched subsystems. Thus, a decentralized switched state feedback controller is considered to stabilize the global large scale switched system. The stability conditions, obtained from a candidate multiple switched Lyapunov function, are proposed in term of Linear Matrix Inequality (LMI). A numerical example is given to illustrate the effectiveness of the proposed approach.","PeriodicalId":149864,"journal":{"name":"18th Mediterranean Conference on Control and Automation, MED'10","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Decentralized stabilization of discrete-time large scale switched systems\",\"authors\":\"D. Jabri, N. Manamanni, K. Guelton, M. Abdelkrim\",\"doi\":\"10.1109/MED.2010.5547882\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stabilization issue for discrete-time interconnected switched system is studied in this paper. A global large scale discrete-time system can be decomposed into a set of small interconnected switched subsystems. Thus, a decentralized switched state feedback controller is considered to stabilize the global large scale switched system. The stability conditions, obtained from a candidate multiple switched Lyapunov function, are proposed in term of Linear Matrix Inequality (LMI). A numerical example is given to illustrate the effectiveness of the proposed approach.\",\"PeriodicalId\":149864,\"journal\":{\"name\":\"18th Mediterranean Conference on Control and Automation, MED'10\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"18th Mediterranean Conference on Control and Automation, MED'10\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MED.2010.5547882\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th Mediterranean Conference on Control and Automation, MED'10","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MED.2010.5547882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

研究了离散时间互联切换系统的镇定问题。全局大尺度离散时间系统可以分解为一组相互连接的小的交换子系统。因此,考虑采用分散的切换状态反馈控制器来稳定全局大尺度切换系统。利用线性矩阵不等式(LMI)给出了候选多重切换Lyapunov函数的稳定性条件。算例说明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decentralized stabilization of discrete-time large scale switched systems
Stabilization issue for discrete-time interconnected switched system is studied in this paper. A global large scale discrete-time system can be decomposed into a set of small interconnected switched subsystems. Thus, a decentralized switched state feedback controller is considered to stabilize the global large scale switched system. The stability conditions, obtained from a candidate multiple switched Lyapunov function, are proposed in term of Linear Matrix Inequality (LMI). A numerical example is given to illustrate the effectiveness of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信