自动时空索引整合和分析组织数据

Craig A. Knoblock, Aparna R. Joshi, Abhishek Megotia, Minh Pham, Chelsea Ursaner
{"title":"自动时空索引整合和分析组织数据","authors":"Craig A. Knoblock, Aparna R. Joshi, Abhishek Megotia, Minh Pham, Chelsea Ursaner","doi":"10.1145/3152178.3152185","DOIUrl":null,"url":null,"abstract":"Organizations are awash in data. In many cases, they do not know what data exists within the organization and much information is not available when needed, or worse, information gets recreated from other sources. In this paper, we present an automatic approach to spatio-temporal indexing of the datasets within an organization. The indexing process automatically identifies the spatial and temporal fields, normalizes and cleans those fields, and then loads them into a big data store where the information can be efficiently searched, queried, and analyzed. We evaluated our approach on 600 datasets published by the City of Los Angeles and show that we can automatically process their data and can efficiently access and analyze the indexed data.","PeriodicalId":378940,"journal":{"name":"Proceedings of the 3rd ACM SIGSPATIAL Workshop on Smart Cities and Urban Analytics","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Automatic Spatio-temporal Indexing to Integrate and Analyze the Data of an Organization\",\"authors\":\"Craig A. Knoblock, Aparna R. Joshi, Abhishek Megotia, Minh Pham, Chelsea Ursaner\",\"doi\":\"10.1145/3152178.3152185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Organizations are awash in data. In many cases, they do not know what data exists within the organization and much information is not available when needed, or worse, information gets recreated from other sources. In this paper, we present an automatic approach to spatio-temporal indexing of the datasets within an organization. The indexing process automatically identifies the spatial and temporal fields, normalizes and cleans those fields, and then loads them into a big data store where the information can be efficiently searched, queried, and analyzed. We evaluated our approach on 600 datasets published by the City of Los Angeles and show that we can automatically process their data and can efficiently access and analyze the indexed data.\",\"PeriodicalId\":378940,\"journal\":{\"name\":\"Proceedings of the 3rd ACM SIGSPATIAL Workshop on Smart Cities and Urban Analytics\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 3rd ACM SIGSPATIAL Workshop on Smart Cities and Urban Analytics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3152178.3152185\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd ACM SIGSPATIAL Workshop on Smart Cities and Urban Analytics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3152178.3152185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

组织中充斥着数据。在许多情况下,他们不知道组织中存在哪些数据,并且在需要时无法获得许多信息,或者更糟的是,信息是从其他来源重新创建的。在本文中,我们提出了一种对组织内数据集进行时空索引的自动方法。索引过程自动识别空间和时间字段,并对这些字段进行规范化和清理,然后将其加载到大数据存储中,以便有效地搜索、查询和分析信息。我们在洛杉矶市发布的600个数据集上评估了我们的方法,并表明我们可以自动处理他们的数据,并且可以有效地访问和分析索引数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Spatio-temporal Indexing to Integrate and Analyze the Data of an Organization
Organizations are awash in data. In many cases, they do not know what data exists within the organization and much information is not available when needed, or worse, information gets recreated from other sources. In this paper, we present an automatic approach to spatio-temporal indexing of the datasets within an organization. The indexing process automatically identifies the spatial and temporal fields, normalizes and cleans those fields, and then loads them into a big data store where the information can be efficiently searched, queried, and analyzed. We evaluated our approach on 600 datasets published by the City of Los Angeles and show that we can automatically process their data and can efficiently access and analyze the indexed data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信